
Computer Science 202
Introduction to Programming
The College of Saint Rose
Fall 2012

Topic Notes: Repetition

People find repetition boring. Fortunately, computers don’t feel this way. This is fortunate because
repetition is the only way we can exploit the full power of a computer. As we discussed in the first
class, part of the computer’s power comes from the fact that it can follow the instructions stored
within its memory rapidly without waiting for a human being to press a button or flip a switch.

In all of the examples we have considered so far, the sequences of instructions performed are quite
short. The only time our programs have taken more than a few microseconds to execute are when
we have the program wait for input from aScanner or JOptionPane. The computer works
for a fraction of a second then waits for input or finishes. We could get the computer to do more
work by writing methods with thousands or millions of instructions, but this would be painful.

As a simple example (which we won’t write), suppose we want tocompute all of the perfect
squares (i.e., 1, 4, 9, 16,etc.) that are less than 100. We could write a program to print themout
one by one, each with its own output statement. But what about all perfect squares less than 1,000?
Or 1,000,000? Or 1,000,000,000? None of us are signing up to write that program with thousands
of printouts.

But we can get the computer to execute thousands or millions ofinstructions without writing thou-
sands or millions of instructions ourselves: we can have thecomputer execute the same instructions
over and over and over again.

At first, this may seem like a boring and inefficient use of the computer. In fact, when in comes to
following instructions, doing the same thing over and over again can be very interesting.

Moreover, we may not always know exactly how many times our statements will need to be ex-
ecuted, so it would be nearly impossible to write the programwith a sequence of instructions
without some repetition.

while Loops in Visual Logic and in Java
We begin in Visual Logic, and we will develop a flowchart for a program that prints perfect squares
up to some limit.

We will use a new flowchart construct called a “While Loop”. A While Loop is essentially an If
Condition that repeatedly executes its “True” branch until the condition becomes False, in which
case it continues to the next statement.

In our case, we will read in our upper limit, and start computing the squares of numbers, continuing
until the next square is greater than our upper limit.



CSC 202 Introduction to Programming Fall 2012

We will also make use of one more feature of Visual Logic here –console output. In any “Output
Expression” element, we have the choice of having the outputin a dialog box or in a console
window (like we get when we useSystem.out.println in Java). Since we will potentially
be outputting many numbers, it will be much easier to use our program if we can avoid having a
popup dialog box to click on for each number generated.

The Visual Logic flowchart for this example is available withthe Java example below.

Once our flowchart is working, we can convert to Java. As usual, we will have to worry a bit more
about syntax in Java.

Java provides thewhile statement, or “while loop”, to perform repeated actions. Java includes
other looping constructs that we will see later in the semester.

The syntax of awhile statement is:

while (condition)
{

...
}

As in theif statement, the condition used in a while must be some expression that produces a
boolean value. The statements between the open and closed curly brackets are known as the
bodyof the loop.

A common way the while loop is used is as follows:

while (condition)
{

do something
change some variable so that next time you do

something a bit differently
}

The condition controlling thewhile loop will usually involve the variable that’s changing. If
nothing in the condition changes, then the loop will never terminate. Such a condition is called
an infinite loop. We avoid this, in general, by ensuring that our loops have a precise stopping
condition. While we might be able to look at an algorithm and say “hey, we should stop now”,
Java will not (and in fact cannot, in general) determine if a loop will not stop.

Armed with this construct, we can convert our flowchart into Java

See Example: PerfectSquares

Other than thewhile statement itself, we see one additional Java construct here:

nextNumber++;

2



CSC 202 Introduction to Programming Fall 2012

Since increment and decrement operations on variables are extremely common in programming,
the designers of Java (and the designers of C before them), included a shorthand notation for these.

The above has the same effect as if we had written

nextNumber = nextNumber + 1;

Loops for Error Checking
We will use loops in many contexts, one of which is to allow us to reissue prompts and reread input
when an invalid value is entered.

To demonstrate this, we will improve on one of our old examples: the one where we determined
whether a trip on the Massachusetts Turnpike was toll free, partially tolled, or fully tolled.

See Example: MassPikeTollsBetter

The changes are all at the start of the program while we input values.

See the comments there for details.

The do-while Loop
Thewhile loop we saw in the last few examples is called apre-test loop. That is, we check the
condition before we enter the first time. This allows awhile loop to execute its body 0 times if
the condition is initially false.

In some circumstances, we want to execute the loop at least once. Such a loop is called apost-test
loop.

Consider the problem where we have a sequence of numbers to read in, say prices of items at a
supermarket checkout, for which we want to keep a running total to report at the end.

In Visual Logic, we can accomplish this by choosing the “Post-test” option in the While Loop
component.

We use this to develop a flowchart for the problem.

Notice how the condition test is now at the “bottom” of the loop construct.

Java provides a construct we can use for this purpose as well –thedo-while loop.

It is basically the same as awhile loop, except we begin it with the keyworddo, follow with the
body of the loop, and end it with awhile keyword and condition.

do
{

...
} while (condition);

3



CSC 202 Introduction to Programming Fall 2012

See Example: Checkout

This example demonstrates thedo-while construct.

One other new Java construct here is the+= assignment operator:

total += itemPrice;

Much like the++we saw recently for the increment operation (and the corresponding-- operation
for decrement), this is a shorthand notation for a common programming task: adding a value to a
variable and storing the result back in that variable:

total = total + itemPrice;

This shorthand exists for all of the standard arithmetic operators:-=, *=, /= and%=.

For example, if we wanted to double the value in a variablex, we could use the shorthand:

x *= 2;

You are never going to be required to use these shorthand operators, but they are convenient, and
you will need to recognize them in my examples.

Counting Loops
All of the loops we wish to have in our programs can be written using thewhile anddo-while
constructs we have just seen.

However, most programming languages include another construct that is typically used forcount-
ing loops. Both Visual Logic and Java have such a construct, called afor loop.

Let’s look at it in Visual Logic first. Our first example will bea straightforward one: calculating
the sum of the 10 integers.

When we create a “For Loop” element in Visual Logic, we are presented with a window that lets
us control how this counting loop will count. There are four pieces of information needed here:

1. The name of a variable that will contain the values as we count

2. The first value to be given to the variable

3. The last value to be given to the variable

4. The amount by which we change the value each time around theloop (allowing us to count
backwards, or by 2’s or any number of other variations)

4



CSC 202 Introduction to Programming Fall 2012

Java’sfor loop looks a bit different, but essentially has all of the same components.

for (int number = 1; number <= 10; number++)
{

// do stuff - but omit number++ at end
}

The code in the parentheses consists of 3 parts; it is not justa condition as inif or while
statements. The parts are separated by semicolons. The firstpart is executed once when we first
reach thefor loop. It is used to declare and initialize the counter. The second part is a condition,
just as inwhile statements. It is evaluated before we enter the loop (ı,e it is a pre-test loop)
and before each subsequent iteration of the loop. It defines the stopping condition for the loop,
comparing the counter to the upper limit. The third part performs an update. It is executed at the
endof each iteration of thefor loop, just before testing the condition again. It is used to update
the counter.

See Example: Sum1To10

Notice how the for localizes the use of the counter. This has two benefits. First, it simplifies the
body of the loop so that it is somewhat easier to understand the body. More importantly, it becomes
evident, in one line of code, that this is a counting loop.

Other variations

Many variations are possible and we will see them frequentlythroughout the remainder of the
course. For example, we couldcount downinstead of up:

See Example: Countdown

We can see the loop in Visual Logic as well as in Java.

This includes not only a count down loop, but a loop whose starting condition depends on the
value in a variable instead of an integer constant. We can useany arithmetic expression for the
initialization and any boolean expression for the stoppingcondition.

If we wanted to count by 2’s to add up the even numbers:

See Example: Sum2ToNBy2

We can compute some number of terms of the geometric sum

1

2
+

1

4
+

1

8
+

1

16
+ ...

If we continue this sum infinitely, the series sums to 1 (can you prove it?).

See Example: GeometricFractionalSum

This example has a straightforward counting loop structure, but has more work to do each time
around the loop. Not only do we need to make sure we iterate theproper number of times, we also

5



CSC 202 Introduction to Programming Fall 2012

need to update the value of the next term to be added each time around.

6


