Computer Science 202

Introduction to Programming
The College of Saint Rose
Fall 2012

Topic Notes: Repetition

People find repetition boring. Fortunately, computers tif@el this way. This is fortunate because
repetition is the only way we can exploit the full power of amqmuter. As we discussed in the first
class, part of the computer’s power comes from the fact then follow the instructions stored
within its memory rapidly without waiting for a human beirgpress a button or flip a switch.

In all of the examples we have considered so far, the seqaerfaestructions performed are quite
short. The only time our programs have taken more than a fewoseconds to execute are when
we have the program wait for input fromStanner or JOpt i onPane. The computer works
for a fraction of a second then waits for input or finishes. Weald get the computer to do more
work by writing methods with thousands or millions of ingttions, but this would be painful.

As a simple example (which we won't write), suppose we wantdmpute all of the perfect
squaresi(e. 1, 4, 9, 16etc) that are less than 100. We could write a program to print tbam
one by one, each with its own output statement. But what ablpgdiect squares less than 1,000?
Or 1,000,000? Or 1,000,000,000? None of us are signing upite that program with thousands
of printouts.

But we can get the computer to execute thousands or milliomstifictions without writing thou-
sands or millions of instructions ourselves: we can havedneputer execute the same instructions
over and over and over again.

At first, this may seem like a boring and inefficient use of tbmputer. In fact, when in comes to
following instructions, doing the same thing over and owgaia can be very interesting.

Moreover, we may not always know exactly how many times oatestents will need to be ex-
ecuted, so it would be nearly impossible to write the prograith a sequence of instructions
without some repetition.

whi | e Loopsin Visual Logic and in Java

We begin in Visual Logic, and we will develop a flowchart forragram that prints perfect squares
up to some limit.

We will use a new flowchart construct called a “While Loop”. A Whioop is essentially an If
Condition that repeatedly executes its “True” branch uhtl tondition becomes False, in which
case it continues to the next statement.

In our case, we will read in our upper limit, and start compgithe squares of numbers, continuing
until the next square is greater than our upper limit.

CSC 202 Introduction to Programming Fall 2012

We will also make use of one more feature of Visual Logic hecenrsole output. In any “Output
Expression” element, we have the choice of having the outpat dialog box or in a console
window (like we get when we us8yst em out . printl nin Java). Since we will potentially
be outputting many numbers, it will be much easier to use ocognam if we can avoid having a
popup dialog box to click on for each number generated.

The Visual Logic flowchart for this example is available witte Java example below.

Once our flowchart is working, we can convert to Java. As ysualwill have to worry a bit more
about syntax in Java.

Java provides thehi | e statement, or “while loop”, to perform repeated actionstaJacludes
other looping constructs that we will see later in the searest

The syntax of awhi | e statement is:

whil e (condition)
{

}

As in thei f statement, the condition used in a while must be some expresat produces a
bool ean value. The statements between the open and closed curlgdbsaare known as the
bodyof the loop.

A common way the while loop is used is as follows:

whil e (condition)
{

do sonet hi ng
change sone variable so that next tinme you do
sonething a bit differently

}

The condition controlling thevhi | e loop will usually involve the variable that's changing. If
nothing in the condition changes, then the loop will nevemiaate. Such a condition is called
an infinite loop We avoid this, in general, by ensuring that our loops haveeaige stopping
condition. While we might be able to look at an algorithm ang $ey, we should stop now”,
Java will not (and in fact cannot, in general) determine dapl will not stop.

Armed with this construct, we can convert our flowchart irdoal
See Example: PerfectSquares

Other than thevhi | e statement itself, we see one additional Java construct here

next Nunmber ++;

CSC 202 Introduction to Programming Fall 2012

Since increment and decrement operations on variablesxasseely common in programming,
the designers of Java (and the designers of C before theth)dad a shorthand notation for these.

The above has the same effect as if we had written

next Number = next Nunber + 1;

L oopsfor Error Checking

We will use loops in many contexts, one of which is to allowasdissue prompts and reread input
when an invalid value is entered.

To demonstrate this, we will improve on one of our old exareptbe one where we determined
whether a trip on the Massachusetts Turnpike was toll fregigtly tolled, or fully tolled.

See Example: MassPikeTollsBetter
The changes are all at the start of the program while we inpluies.

See the comments there for details.

Thedo-whi | e Loop

Thewhi | e loop we saw in the last few examples is calledra-test loop That is, we check the
condition before we enter the first time. This allowsta | e loop to execute its body O times if
the condition is initially false.

In some circumstances, we want to execute the loop at least &uch a loop is calledost-test
loop.

Consider the problem where we have a sequence of numbersdtantesay prices of items at a
supermarket checkout, for which we want to keep a runnirg totreport at the end.

In Visual Logic, we can accomplish this by choosing the “Rest” option in the While Loop
component.

We use this to develop a flowchart for the problem.
Notice how the condition test is now at the “bottom” of thepamnstruct.
Java provides a construct we can use for this purpose as Wedlde- whi | e loop.

It is basically the same asvi | e loop, except we begin it with the keywodb, follow with the
body of the loop, and end it withwahi | e keyword and condition.

do
{

} while (condition);

CSC 202 Introduction to Programming Fall 2012

See Example: Checkout
This example demonstrates ttie- whi | e construct.

One other new Java construct here istheassignment operator:

total += itenPrice;

Much like the++ we saw recently for the increment operation (and the coomdipg- - operation
for decrement), this is a shorthand notation for a commognarmming task: adding a value to a
variable and storing the result back in that variable:

total = total + itenPrice;

This shorthand exists for all of the standard arithmeticafes:- =, * =,/ = and%- .

For example, if we wanted to double the value in a variahlee could use the shorthand:

X *= 2

You are never going to be required to use these shorthandtopgrbut they are convenient, and
you will need to recognize them in my examples.

Counting L oops

All of the loops we wish to have in our programs can be writteimg thewhi | e anddo- whi | e
constructs we have just seen.

However, most programming languages include another rarghat is typically used focount-
ing loops Both Visual Logic and Java have such a construct, called op.

Let’s look at it in Visual Logic first. Our first example will be straightforward one: calculating
the sum of the 10 integers.

When we create a “For Loop” element in Visual Logic, we are @nésd with a window that lets
us control how this counting loop will count. There are foigges of information needed here:

=

The name of a variable that will contain the values as watou
The first value to be given to the variable

The last value to be given to the variable

WD

The amount by which we change the value each time arounddpgallowing us to count
backwards, or by 2's or any number of other variations)

CSC 202 Introduction to Programming Fall 2012

Java’'sf or loop looks a bit different, but essentially has all of the sasomponents.

for (int nunmber = 1; nunber <= 10; nunber ++)

{
}

// do stuff - but omt nunber++ at end

The code in the parentheses consists of 3 parts; it is notajustndition as in f or whi |l e
statements. The parts are separated by semicolons. Theditss executed once when we first
reach thd or loop. Itis used to declare and initialize the counter. Treoad part is a condition,
just as inwhi | e statements. It is evaluated before we enter the loop (1% at pre-test loop)
and before each subsequent iteration of the loop. It deflmestbpping condition for the loop,
comparing the counter to the upper limit. The third part perfs an update. It is executed at the
endof each iteration of thé or loop, just before testing the condition again. It is usedgdate
the counter.

See Example: Sum1Tol0

Notice how the for localizes the use of the counter. This haslienefits. First, it simplifies the
body of the loop so that it is somewhat easier to understandaldy. More importantly, it becomes
evident, in one line of code, that this is a counting loop.

Other variations

Many variations are possible and we will see them frequethtfgughout the remainder of the
course. For example, we coutdunt dowrinstead of up:

See Example: Countdown
We can see the loop in Visual Logic as well as in Java.

This includes not only a count down loop, but a loop whosetistaicondition depends on the
value in a variable instead of an integer constant. We carangarithmetic expression for the
initialization and any boolean expression for the stopmiogdition.

If we wanted to count by 2’s to add up the even numbers:
See Example: Sum2ToNBy2

We can compute some number of terms of the geometric sum

Ll Ly
248 16

If we continue this sum infinitely, the series sums to 1 (cam gove it?).

See Example: GeometricFractionalSum

This example has a straightforward counting loop structbu has more work to do each time
around the loop. Not only do we need to make sure we iteratpriiger number of times, we also

5

CSC 202 Introduction to Programming Fall 2012

need to update the value of the next term to be added each toued

