Computer Science 202

Introduction to Programming
The College of Saint Rose
Fall 2012

Topic Notes: Beginning with Programming

We will next take our first shot at writing a programs to solpedfic problems.

Analyzing a Problem
Let’s consider the following situation and think about hoe might develop a program to solve it:

Suppose you are a teacher with a class of 20 students. Yogivglsome number of tests (3, 4, or
5) during a marking period. Write a computer program to praghestudents name and marking
period average.

We first need talefine the probleroarefully.

e What problem are you trying to solve?
e Understand expected inputs

e Understand expected outputs

We will consider two approaches to developing a plan to stilegroblem.

Pseudocode Planning

We can describe the problem in English-like phrases that ileal pseudocode

1. Begin with first student.

Set number of tests counter to zero.
Set student test total to zero.

Get student’'s name.

Get a test grade.

Add 1 to the number of tests counter.

Add the test grade to student test total.

© N o g » w D

Repeat steps 5-7 for the number of tests in marking period.

CSC 202 Introduction to Programming Fall 2012

9. Calculate student’s marking period average.
10. Print student’s name and marking period average.
11. Next student.

12. Repeat steps 2-11, until you have done all students is.clas

This is like a set of instructions or a recipe for solving thelgem.

Flowchart Planning
Another, more visual approach to planning is calldtbaichart

Here, we show the steps in the algorithm as a diagram (usiegjfgpshapes to add to meaning).
A flowchart shows the sequence of statementfoar of execution

See supplied appendix for an explanation of symbols. [p8§6s379 from Computer Science, A
Structured Approach Using C++, 2nd Edition, by Forouzan aiide@y, Brooks/Cole, 2004.] **
available in Blackboard only.

CSC 202 Introduction to Programming Fall 2012

1
N 20
I i
Set numTests
to 0

l

SetstuTotal
to0

il
——»< student

Add 1 to
num Tests

!

| Add grade
fo stuTotal

——————————

Calculate
siuAverage

A T

¢ Erint name & /
/ sluAuerage/
/ y

e This diagram clearly shows the flow of execution.
e One group of statements is repeated for each of the 20 sgident
e A smaller group of statements is repeated for each test.

Either pseudocode or a flowchart can help you plan a solutionare encouraged (and sometimes
required) to use a flowchart in this class.

Turning it into Java

Once we have a plan in the form of pseudocode or a flowchasttiitie to write a program to
perform the task.

CSC 202 Introduction to Programming Fall 2012

We mentioned earlier that there are many programming lagegiaut there and that we will be
using Java.

e We could use #dow-levelor machine language

machine code can be used on just one type of computer (CPU)

provides the fastest execution

consist entirely of binary numbers representing opcoddsaddresses
very difficult, error prone, and rarely done

not really intended to be done by human programmers

e An assembly languags close to machine language but is designed to be used by arhum

uses some word-like symbols callethemonic$or opcodes
can use both decimal numbers and labels for memory addresses

assembly language programs are translated (assembledyachine language

rarely used outside of operating systems, embedded systems

¢ A high-level programming languags a better choice

— procedurallanguages such as FORTRAN, COBOL, BASIC, Pascal, C, and C++ dom-
inated until the mid 1990’s

— object-orientedanguages such as C++, Visual Basic, Java, and C# were develsped
graphical user interfaces (GUIs) became more common

But this course is about programming in Java, so that is whaisee Since we don’t know any
specifics of Java yet, all we will do is look at a solution and ittto see an example.

See Example: StudentAverages

Java Basics

We will look at a series of simple Java examples to familyou with the basics of the Java
programming language, including how to develop and run anog.

Let’s start by looking at a “Hello, World!” program in Java.i$ a longstanding tradition among
programmers to write their first program in any language totmut that message.

[*

A Hello Wrld exanple in Java
*/
/'l class exanple

CSC 202 Introduction to Programming Fall 2012

public class HelloWwrld {
public static void main(String[] args) {

Systemout.printin("Hello, Wrld!'");

}
}

If we were to think about this very simple problem in Englistpsuedocode, it would be something
like:

print the nmessage "Hello, World!'"
Like many programming languages, even the simplest Javgrgre require a good amount of

additional code beyond the line that performs the task.

That is because a programming language is very picky in homgram is formatted. This is part
of thesyntaxof Java. Let’s look line by line.

The first line is acomment This is not a part of the program that actually gets executéds
just some text that is there for the benefit of anyone readimgawifying the program. You will
be required to make extensive use of comments in your pragthisisemester, even though they
have no effect whatsover on the correct execution of therprog

In Java, comments can take one of two forms.

e Any text betweerd * and+*/ is a comment, possibly spanning multiple lines.
e Any text on a single line following / is a comment.
In Java, programs are written by definialgsses We will see more about what it means to be a

class later in the semester. For now, we just need to be ahairéhe next line tells Java the name
of the program.

The wordspubl i ¢ andcl ass are special words callekeywords These are words that have
special meaning to Java and cannot be used for other purposes

All keywords in Java must be typed in lower case because dacase sensitivianguage. That s,
publ i c is a keyword, but Java would not recognize it as such if yoedygubl i ¢ or PUBLI C.

Page 10 of the text has a list of Java keywords.

We said the wordHel | oWor | d is the name of the program. It is an example ofdentifier. This
is a programmer-defined name used for a variety of purpodes.ofe is used only in one place.

Punctuation is also an essential part of the syntax of Jakia.efhd of the line defining the class
name has @& character. This along, with the correspondjngharacter at the end of the program
defines for Java the extent of the class definition for thesatasnedHel | oWor | d.

Inside that class definition, we havergthoddefinition. This starts with

5

CSC 202 Introduction to Programming Fall 2012

public static void main(String[] args) {

This particular method definition starts with 3 keyworgsabl i ¢, stati c, andvoi d. The
meanings of each of these will become more clear with furtkamples.

It then has the name of the methaodhi n. This is an identifiermai n has a special meaning here
because that is the name of the method that will be executed wk run our program. In general,
methods can use any name that is not a keyword. However, Wweealthat there areaming
conventionsghat give some rules about how methods and other identitiensld be named.

All method definitions have a list gfarametersnside parentheses. We will say much more about
parameters soon. For now, we can just follow the rule thatraiim method must have a parameter
of String[] args as this one does.

Inside the{ and} brackets is théodyof the method, consisting of one or more Jat@ements
A statement is a complete Java instruction that causes thpwter to perform an action.

In our case, the method body consists of just one statement:
Systemout.println("Hello, Wrld!'");

There are many kinds of Java statements. This one is a called@bJava’s builtin methods. The
line says to call the methoByst em out . pri ntl n. A method call includes the name of the
method and then the parameters to send to that method insidatpeses. This method expects
one parameter: the text that it should print out. In this casejust place the text we want to print
inside of double quotes. We will see more intersting exaspton.

Our Java statement ends with a semicolon. This is an impqptah of Java syntax that tells the
language that one statement is done.

An important part of learning to program in Java is to learewhnd where to use the punctuation.

It is important to realize that there is a difference betwakne of Java code and a Jastatement
There is nothing wrong with having a Java statement thatspaitiple lines. We could have just
as well typed:

System out . println(
"Hel l o, World!"

);
and Java would do exactly the same thing. Hopefully this giile some indication of why the

semicolon is so important. Just ending a line is not enoudéltdava that the statement is com-
plete.

Let's augment our example to show one more important Javstieant: thevariable

[+ A Hello World exanple in Java */

6

CSC 202 Introduction to Programming Fall 2012

public class Hellowrld {
public static void main(String[] args) {

String nessage = "Hello, World!'";
System out . printl n(nmessage) ;

}

The only change we've made is to replace the printout witm@di The first defines a variable:
String nessage = "Hello, World!'";

This Java statement defines a namess sage which should contain data of tyt r i ng, and
have it contain the textHel | o, Worl d!".

What does all that mean? Weltessage is an identifier. It's a name we are giving that will let
us refer to some piece of data by that name later in the pragramcan see that the name is also
used as the parameter to thgst em out . pri nt | n statement on the next line.

St ri ng is a builtin data type that can hold some text. If instead wate@to store an integer, we
could define a variable like this:

i nt count = 40;

Here,count is the name for a variable that can holdiarnt (Java’s data type for an integer value),
and gives it the value 40.

Defining a variable basically instructs Java to reserve goanieof the computer's memory for use
by our program, and defines a name we can use to refer to thaifgaemory.

The computer's memory at a low level is really just a hugeemibn of locations that can hold
numbers, and these locations are referred to by number. Qnhe great advantages of a high level
language like Java is that we can refer to memory using Varismes, and that the language will
take care of mapping names to locations and making sure the lsgation is not used for multiple
purposes.

If we think of the computer’s memory as being analogous tagelavall of numbered mailboxes,
defining a variable is like reserving one of those mailboxesafperson, and adding that person’s
name to a list so that that person can tell which mailbox isdasl incoming mail addressed by
name can be routed to the correct box number.

Lab Activity: Writing and Running a Program in BlueJ

CSC 202 Introduction to Programming Fall 2012

The Programming Process

Now we have seen all parts of the programming process we wiliding all semester.

o =
= o

© © N o 00 & W NP

Clearly define what the program is to do.

Visualize the program running on the computer.

Use design tools (flowchart/pseudocode) to create a noddled program.
Check the model for logical errors. Do you get a reasonatdear?
Type the code and compile it.

Correct any errors found during compilation.

Repeat previous 2 steps as many times as necessary.

Run the program with test data for input.

Correct any errors found while running the program.

Repeat previous 5 steps as many times as necessary.

. Validate the results of the program. Does the output reakee?

