
Computer Science 202
Introduction to Programming
The College of Saint Rose
Fall 2012

Topic Notes: Beginning with Programming

We will next take our first shot at writing a programs to solve specific problems.

Analyzing a Problem
Let’s consider the following situation and think about how we might develop a program to solve it:

Suppose you are a teacher with a class of 20 students. You willgive some number of tests (3, 4, or
5) during a marking period. Write a computer program to print each students name and marking
period average.

We first need todefine the problemcarefully.

• What problem are you trying to solve?

• Understand expected inputs

• Understand expected outputs

We will consider two approaches to developing a plan to solvethe problem.

Pseudocode Planning

We can describe the problem in English-like phrases that we will call pseudocode.

1. Begin with first student.

2. Set number of tests counter to zero.

3. Set student test total to zero.

4. Get student’s name.

5. Get a test grade.

6. Add 1 to the number of tests counter.

7. Add the test grade to student test total.

8. Repeat steps 5-7 for the number of tests in marking period.

CSC 202 Introduction to Programming Fall 2012

9. Calculate student’s marking period average.

10. Print student’s name and marking period average.

11. Next student.

12. Repeat steps 2-11, until you have done all students in class.

This is like a set of instructions or a recipe for solving the problem.

Flowchart Planning

Another, more visual approach to planning is called aflowchart.

Here, we show the steps in the algorithm as a diagram (using specific shapes to add to meaning).
A flowchart shows the sequence of statements orflow of execution.

See supplied appendix for an explanation of symbols. [pages866-879 from Computer Science, A
Structured Approach Using C++, 2nd Edition, by Forouzan and Gilberg, Brooks/Cole, 2004.] **
available in Blackboard only.

2

CSC 202 Introduction to Programming Fall 2012

• This diagram clearly shows the flow of execution.

• One group of statements is repeated for each of the 20 students.

• A smaller group of statements is repeated for each test.

Either pseudocode or a flowchart can help you plan a solution.You are encouraged (and sometimes
required) to use a flowchart in this class.

Turning it into Java

Once we have a plan in the form of pseudocode or a flowchart, it’s time to write a program to
perform the task.

3

CSC 202 Introduction to Programming Fall 2012

We mentioned earlier that there are many programming languages out there and that we will be
using Java.

• We could use alow-levelor machine language

– machine code can be used on just one type of computer (CPU)

– provides the fastest execution

– consist entirely of binary numbers representing opcodes and addresses

– very difficult, error prone, and rarely done

– not really intended to be done by human programmers

• An assembly languageis close to machine language but is designed to be used by a human

– uses some word-like symbols calledmnemonicsfor opcodes

– can use both decimal numbers and labels for memory addresses

– assembly language programs are translated (assembled) into machine language

– rarely used outside of operating systems, embedded systems

• A high-level programming languageis a better choice

– procedurallanguages such as FORTRAN, COBOL, BASIC, Pascal, C, and C++ dom-
inated until the mid 1990’s

– object-orientedlanguages such as C++, Visual Basic, Java, and C# were developedas
graphical user interfaces (GUIs) became more common

But this course is about programming in Java, so that is what weuse. Since we don’t know any
specifics of Java yet, all we will do is look at a solution and run it to see an example.

See Example: StudentAverages

Java Basics
We will look at a series of simple Java examples to familiarize you with the basics of the Java
programming language, including how to develop and run programs.

Let’s start by looking at a “Hello, World!” program in Java. It is a longstanding tradition among
programmers to write their first program in any language to print out that message.

/*
A Hello World example in Java

*/
// class example

4

CSC 202 Introduction to Programming Fall 2012

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, World!");
}

}

If we were to think about this very simple problem in English or psuedocode, it would be something
like:

print the message "Hello, World!"

Like many programming languages, even the simplest Java programs require a good amount of
additional code beyond the line that performs the task.

That is because a programming language is very picky in how a program is formatted. This is part
of thesyntaxof Java. Let’s look line by line.

The first line is acomment. This is not a part of the program that actually gets executed– it is
just some text that is there for the benefit of anyone reading or modifying the program. You will
be required to make extensive use of comments in your programs this semester, even though they
have no effect whatsover on the correct execution of the program.

In Java, comments can take one of two forms.

• Any text between/* and*/ is a comment, possibly spanning multiple lines.

• Any text on a single line following// is a comment.

In Java, programs are written by definingclasses. We will see more about what it means to be a
class later in the semester. For now, we just need to be aware that the next line tells Java the name
of the program.

The wordspublic andclass are special words calledkeywords. These are words that have
special meaning to Java and cannot be used for other purposes.

All keywords in Java must be typed in lower case because Java is acase sensitivelanguage. That is,
public is a keyword, but Java would not recognize it as such if you typedPublic or PUBLIC.

Page 10 of the text has a list of Java keywords.

We said the wordHelloWorld is the name of the program. It is an example of anidentifier. This
is a programmer-defined name used for a variety of purposes. This one is used only in one place.

Punctuation is also an essential part of the syntax of Java. The end of the line defining the class
name has a{ character. This along, with the corresponding} character at the end of the program
defines for Java the extent of the class definition for the class namedHelloWorld.

Inside that class definition, we have amethoddefinition. This starts with

5

CSC 202 Introduction to Programming Fall 2012

public static void main(String[] args) {

This particular method definition starts with 3 keywords:public, static, andvoid. The
meanings of each of these will become more clear with furtherexamples.

It then has the name of the method,main. This is an identifier.main has a special meaning here
because that is the name of the method that will be executed when we run our program. In general,
methods can use any name that is not a keyword. However, we will see that there arenaming
conventionsthat give some rules about how methods and other identifiers should be named.

All method definitions have a list ofparametersinside parentheses. We will say much more about
parameters soon. For now, we can just follow the rule that ourmainmethod must have a parameter
of String[] args as this one does.

Inside the{ and} brackets is thebodyof the method, consisting of one or more Javastatements.
A statement is a complete Java instruction that causes the computer to perform an action.

In our case, the method body consists of just one statement:

System.out.println("Hello, World!");

There are many kinds of Java statements. This one is a call to one of Java’s builtin methods. The
line says to call the methodSystem.out.println. A method call includes the name of the
method and then the parameters to send to that method inside parentheses. This method expects
one parameter: the text that it should print out. In this case, we just place the text we want to print
inside of double quotes. We will see more intersting examples soon.

Our Java statement ends with a semicolon. This is an important part of Java syntax that tells the
language that one statement is done.

An important part of learning to program in Java is to learn when and where to use the punctuation.

It is important to realize that there is a difference betweena line of Java code and a Javastatement.
There is nothing wrong with having a Java statement that spans multiple lines. We could have just
as well typed:

System.out.println(
"Hello, World!"

);

and Java would do exactly the same thing. Hopefully this willgive some indication of why the
semicolon is so important. Just ending a line is not enough totell Java that the statement is com-
plete.

Let’s augment our example to show one more important Java construct: thevariable.

/* A Hello World example in Java */

6

CSC 202 Introduction to Programming Fall 2012

public class HelloWorld {

public static void main(String[] args) {

String message = "Hello, World!";
System.out.println(message);

}
}

The only change we’ve made is to replace the printout with 2 lines. The first defines a variable:

String message = "Hello, World!";

This Java statement defines a namemessage which should contain data of typeString, and
have it contain the text"Hello, World!".

What does all that mean? Well,message is an identifier. It’s a name we are giving that will let
us refer to some piece of data by that name later in the program. You can see that the name is also
used as the parameter to theSystem.out.println statement on the next line.

String is a builtin data type that can hold some text. If instead we wanted to store an integer, we
could define a variable like this:

int count = 40;

Here,count is the name for a variable that can hold anint (Java’s data type for an integer value),
and gives it the value 40.

Defining a variable basically instructs Java to reserve somepart of the computer’s memory for use
by our program, and defines a name we can use to refer to that part of memory.

The computer’s memory at a low level is really just a huge collection of locations that can hold
numbers, and these locations are referred to by number. One of the great advantages of a high level
language like Java is that we can refer to memory using variable names, and that the language will
take care of mapping names to locations and making sure the same location is not used for multiple
purposes.

If we think of the computer’s memory as being analogous to a large wall of numbered mailboxes,
defining a variable is like reserving one of those mailboxes for a person, and adding that person’s
name to a list so that that person can tell which mailbox is his, and incoming mail addressed by
name can be routed to the correct box number.

Lab Activity: Writing and Running a Program in BlueJ

7

CSC 202 Introduction to Programming Fall 2012

The Programming Process
Now we have seen all parts of the programming process we will be using all semester.

1. Clearly define what the program is to do.

2. Visualize the program running on the computer.

3. Use design tools (flowchart/pseudocode) to create a modelof the program.

4. Check the model for logical errors. Do you get a reasonable answer?

5. Type the code and compile it.

6. Correct any errors found during compilation.

7. Repeat previous 2 steps as many times as necessary.

8. Run the program with test data for input.

9. Correct any errors found while running the program.

10. Repeat previous 5 steps as many times as necessary.

11. Validate the results of the program. Does the output makesense?

8

