Computer Science 202

Introduction to Programming
The College of Saint Rose
Fall 2012

Topic Notes: Methods

As programmers, we often find ourselves writing the same roilai code over and over. We
learned that we can place code inside of loop constructsve the same code executed multiple
times. There are other situations where we wish to execue 5 the same code repeatedly but
not all in the same place in our program’s execution.

Consider a simple program, which we could have written moagits that prints the lyrics tBaa
Baa Black Sheep.

See Example: BaaBaaBad

In both the Visual Logic flowchart and in the Java program, aesthat we have 4 printouts repeated
— these are the refrain of the song. To accomplish this, virereiteed some copying and pasting
or we need to re-type some lines.

A loop wouldn’t help us here, as the lines we need to repeateparated by 4 other lines that do
not repeat.

Fortunately, all modern programming languages, includfiepal Logic and Java, allow us to
group sets of statements together into units that can baieton demand” by inserting other
statements. These constructs go by many narfuestions, methods, procedures, subroutines or
subprograms.

Visual Logic calls these procedures, and Java calls therhodst

Here is our example, using a procedure in Visual Logic andthatkin Java to group our repeated
statements.

See Example: BaaBaaBetter
Let’s first look at how this works in Visual Logic.

When the flowchart gets to a procedure callré@insfers control to the flowchart for the procedure,
remembering where it left off, so when the procedure hadtadsthe main flowchart picks up and
continues from that point.

In the Java program, our method for printing the refrain kakot like the method we know well:
mai n. Other than the name (which in this caseli®f r ai n”) and the fact that we don’t have
the “Stri ng args[]”inthe parentheses, it is very similar to thai n methods we have been
writing all semester.

Just likemai n, the body of the ef r ai n method consists of a collection of Java statements that
will execute when the ef r ai n method is called.

CSC 202 Introduction to Programming Fall 2012

We can also see in theai n method where weall ther ef r ai n method. We simply put its
name, followed by() ;

This is somewhat similar to what we have been doing all seenéstall methods:

Systemout.println("H!");
keyboard. nextiInt();
JOpt i onPane. showMessageDi al og(nul |, "H !");

except that there is no name or names before a period beferaethod name. We can omit it
here, because that means we want to call a method in the sasseasithe method which is making
the call.

We could have made our method callg ®@f r ai n look like the ones we've been using all along:
BaaBaaBetter.refrain();

Note that we used a method in this case primarily becauswed us to reduce the amount of
repeated code. This is in itself a worthy goal. If we had nedispl one of the words in the refrain,
we can change it in one place and it will be corrected in baithtipgs of the refrain.

However, there is another advantage in readability. By ltpficalls to the ef r ai n method in
our mai n method, it is more clear what we are doing there. With this indpwe can consider
moving parts of ourmai n method into a separate method just for clarity.

See Example: BaaBaa2Methods

Passing Parametersto Methods

Some methods work like the ones in the previous exampley:singply perform the same exact
task every time they are called.

However, many others will perform functionality that dederon some input. The way we get
input to a method is by passimpgrameters (also known agsrguments) to a method.

We have done this with the methods we have been using all aWhgt doesSyst em out . println
print? Whatever we pass as its parameter. What is the rangdugfsveeturned by &andomis
next | nt method? It depends on the parameter we pass.

We can pass parameters to methods we write as well.
See Example: Numberinfo

In either case (Visual Logic or Java), we introduce a vaeablour method that is initialized to
whatever value is passed in the parentheses when we calethe

A slightly more complex example:

See Example: HoursWorked

CSC 202 Introduction to Programming Fall 2012

Here, we pass 8t r i ng parameter to our method. It contains the contents of onefia& input
file, and the method is responsible for breaking down that ilmo its components, which are an
employee id number, an employee name, followed by some nuafifleating point numbers that
represent hours worked by day.

Here, we see another use obaanner . If we pass &t r i ng as the parameter togcanner’s
constructor, we can use tiBeanner methods to read individual words or numbers.

We could alternately move the reading of each line of thefile our method as well.
See Example: HoursWorked2

Now, the parameter to our method needs to beStanner , so the method will be able to call
theScanner s next Li ne method.

Passing M ultiple Parameters

Nothing stops us from passing multiple parameters to a ndathpassing information of any data
type.

See Example: SumOfSquares
Here, we create a procedure (in Visual Logic) or a methodgua)that accepts two parameters.

Order matters when passing parameters. The first parametes call will match the first param-
eter in the method signature, the second with the secondsama. In this example, we'd get
the same result, but that is not generally the case. Thisdvoalter, for a simple example, if we
changed to a “difference of squares” here.

Returning Information from M ethods

So far, each method we have written has the same start tgitatsre:
public static void

We will now change that last word to go from a “void” method -eomhich does not return any
information, to one which does.

We have used methods that return values all semester, buawee rfot written any ourselves.
Consider some of the following methods:

e | nt eger. parsel nt

e JOpti onPane. show nput Di al og

e next Doubl e of aScanner object

e next | nt of aRandomobject

CSC 202 Introduction to Programming Fall 2012

Each of these results in Java performing some task, andygbaok to the caller some information.
We can write these kinds of methods as well.

Our first example will be a method that adds up all of the intedgpetween 1 and a given number,
and returns the sum.

So a call such as
int sum = sumNunber sTo(10);

should leave a value of 55 sum
Such a method and some examples of how to call:
See Example: Sum1ToN

A few quick notes about this example:

e Since our method computes an integer value, we replacel in its method signature with
i nt.

e The value we compute that we wish to have our method send baiskdaller is specified in
ar et ur n statement.

e Any code in the method afterraet ur n statement will not be executed, so is not allowed.
An exception might be if we haveraet ur n inside of a conditional statement (like am
orsw t ch).

We can see immediately that we have some similar advantagag voi d methods. Therai n
method becomes shorter, and we avoid potentially havingfeat sections of code when we want
to compute such a sum in multiple places in our program.

In this case, there is an additional advantage. Some of yguremaember that there is a much
easier (computationally speaking) algorithm for compgitims sum. Rather than looping through
all of the numbers and adding each to a running total, we capidy this formula:

2”:2, _n(n+1)
= 2

This is a more efficient operation, at least for larger nurebdtlere, we do one addition, one
multiplication, and one division. (Moreover, the divisina division by 2 - something computers
are very good at.)

So if we discover this formula and want to change our prog@use it, we need only change our
method. We don’t need to change anythingrai n!

See Example: Suml1ToNBetter

CSC 202 Introduction to Programming Fall 2012

We next consider an example with a method that takes 4 pagasred returns doubl e value
— one to compute the distance between 2 points in the plane.

See Example: Distance

The method itself is not that complicated, but the main proguses it several times, so the exam-
ple looks more complex than it really is.

See the comments in the code for more.

A Utility Method for Input

We now will revisit a topic from several weeks ago, using metto provide a better solution.
Recall that many of our programs that ask for input have hatilosescof code that look similar to
this:

int val;

do {
Systemout.print("Enter a value between 1 and 10: ");
val = keyboard. nextlInt();

if ((val < 1) || (val > 10)) {
System out. println("Value out of range, please try again.");

}
while ((val < 1) || (val > 10));

We can write a method that can accomplish this, and make egrgeenough to be useful in a
variety of situations.

We will do this by modifying a program that computes a weighdgerage from a grading break-
down:

See Example: GradingBreakdown

This program works, but as you can see, itta¢ n method is quite lengthy and includes a signif-
icant amount of repeated code. Let’s focus on that part otdue that prompts for an reads in
category grades and does error checking on those inputs:

doubl e | abPoi nt searned = 0. 0;
do {
System out. print("How many | ab points did you earn (total avail:
LAB PONTS + ")? ");
| abPoi nt sear ned = keyboar d. next Doubl e() ;
if ((labPointsEarned < 0.0) || (labPointsEarned > LAB PO NTS)) |
System out. println("Response nust be in the range 0.0 to "

}
} while ((labPointskEarned < 0.0) || (!abPointsEarned > LAB_ PO NTS))
There are three items here that differ from one instanceisttide block to the next:

5

CSC 202 Introduction to Programming Fall 2012

e the name of the variable in which to place the redudtt{Poi nt sEar ned for this instance)
e the description of the category to be included in the prothpap"” in this case)

e the upper limit on the range of legal inputsAB_PO NTS in this case)

If we are going to encapsulate this code block in a method, Weneed to transfer these bits of
information back and forth between thai n method and the new method.

The description and the upper limit are both knownmo n and will be needed by the new method,
so these will become parameters.

The “points earned” we are reading in will be read from theldaard by the new method, but will
be needed back imai n to accumulate the overall average. This will become a retalue.

Finally, our new method will need to know about the keybo8chnner thatmai n will still
create. So th&canner should also be passed as a parameter.

This gives us the result:

See Example: GradingBreakdownBetter

