Computer Science 202

Introduction to Programming
The College of Saint Rose
Fall 2012

Topic Notes: Java Fundamentals

We will proceed using a series of increasingly-complex f@ots to practice our problem solving
skills and to introduce and reinforce Java constructs amadin@logy.

By the time we get through this series of examples, you wilehgeen nearly everything presented
in Chapter 2 of Gaddis, though we will do so in a different (Haplg, better) order.

Glorified “Hello, World!”

The simplest class of programs are also the most excrugigatiioring — ones that just print out
the same message or set of messages every time we run thempr8gcams are rarely useful in
practice and really serve only to introduce the basics obgnamming language.

But let’s look at one anyway.
See Example: Seuss

This is basicallyHel | oWor | d all over, but there are a few little items that are new.

e Notice that the sentence “We know how.” is printed on the stmeeas “Well, we can do it.”.
That's because we used a different printing method for ttiertaSyst em out . pri nt.
This one works the same 8gst em out . pri nt | n exceptthat the outputis not advanced
to the next line at the end.

e The last statement includes soescape sequencésat cause the output to be formatted a
bit differently than it would otherwise appear. Escape seges begin with & character
and are followed by aontrol characterthat defines the behavior of the sequence. Here, we
have three:

1. \'t inserts a “tab” character, effectively indenting our outjouthis case,
2. \ n advances the output to a new line, and

3. \" prints the double quote character, which would otherwiseniy@ssible since a
regular" character would be interpreted as the end of the text we yrgtto print.

One bit of terminology at this point: the methd8igst em out . pri nt | nandSyst em out . pri nt
are part of thelava API(Application Programmer Interface). Any valid Java instibn comes
equipped with an extensive collection of pre-written saftevthat our programs can use.

CSC 202 Introduction to Programming Fall 2012

Interactive Programs

To create nearly any interesting program, we need to be alpeotvide it withinput. This will
allow the program to react differently when presented witfecent outputs.

Before we see how to do this in Java, we will make our first realafs/isual Logic.

We will develop the Visual Logic flowchart and run it.

Begin I
Input: name ,

Output:
"Hello, " + name

+
End

Once we are convinced that our logic is correct (and that$aad, with such a simple problem),
we can go ahead and develop a Java program.

See Example: HelloYou

It might not seem like this should be much more complicateah thur previous programs, but it
turns out that to do this in Java, we need to utilize a numbeewofideas and Java constructs.

First, we need to figure out how to get information from thebd@srd into our program. To do this,
we again turn to the Java API. There are several mechanisalalale, a few of which we will see
this semester. But we will start with one calle®@anner .

In order to use &canner , we will need to tell Java that we intend to use it, by inseytime line:
i mport java.util.Scanner;

at the top of our program (before the class header). We walllager how to determine exactly
what to “import” to use various Java API functionality, bot how, just know that this is what we
need to do to use &canner .

Then, in oummai n method, where we wish to access information from the keyhoeeconstruct
aScanner that we can use in our program. This is done with the line:

Scanner input = new Scanner(Systemin);

There’s actually quite a bit going on in this line, and wellaenine it more carefully in a minute.
But for now, we're creating &canner that usesSyst em i n (which is Java’s cryptic way of
saying “what is typed at the keyboard”), and giving it a naimeput . i nput is avariable

CSC 202 Introduction to Programming Fall 2012

which is a fundamental construct in nearly any programmamgiage, and again one that we will
examine more carefully in a moment.

Now that we have &canner calledi nput , we can ask it to give us the next chunk of text that
was typed at the keyboard. There are many possibilities fatwe mean by “chunk” but for now,
we just want the word that someone types in as their name’sJawanner provides a method
that does just that, calletext .

We will also need a name for the word that was typed in, so wepcau it out later. This is all
accomplished with the line:

String nane = input.next();

Before we carry on further, we need to consider the concepiidblies a little more closely.

A variable is a named storage location in the computer’'s memory. We usgiable when we
have determined that there is some piece of data that we haresiJava statement, and we need
to remember that information for use in later statements.

When we need a variable in our program, we nuaestlarethat variable to Java, which is just a
fancy way of saying that we are going to introduce a name taJava program and tell Java what
type or kind, of data we intend to store there.

A variable declaration takes one of two forms:
type nane;

or
type name = initial Val ue;

where “type” is thedata type(or “ kind of data”) we will store, and “name” is the identifiere
intend to use to refer to that data. In the second form, we iaitalize the variable to have a
specific value.

We will see many data types that store a variety of kinds arim&tion. For now, we have two:

e Scanner — which is the keyboard input mechanism we wish to use

e Stri ng - a collection of text, like a word or sentence

We give ourScanner the nama nput and theSt ri ng the namenane.

When naming our variables, we need to keep in mind severaldemasions:

e The name must be a valid Java identifier. This means it musistonly of letters, numbers,
the dollar sign character, and the underscore charactardthit can only start with a letter).

3

CSC 202 Introduction to Programming Fall 2012

e The name should follow Java’s naming conventions. Recdlfthaariables, we use lower-
case letters, except when we have a name that is made up gbletords, in which case
we capitalize all but the first word.

e The name should be meaningful. That is, it should give somtie@tion of what the variable
is to be used for. The names here satisfy that requirementut implies that this is where
we get our input, andarme implies that this is the name of something.

Once we have a variable, we can make use of its value lateriprogram. We do that here when
we call thenext method of ourScanner named nput and when we use th&t r i ng named
name intheSyst em out . pri nt| n statement at the end of our program.

One last new idea here is that we now have something more eanagl the text to be printed
by Syst em out . pri ntl n. It's not just some text in double quotes, but some text inbii®u
guotes, followed by &, followed by the name of oust r i ng variable.

This is an example dtring concatenationWe have thestring literal (i.e., some text inside double
guotes) to which we “append” the text in the variabbae.

Working With Numbers

Computers often do just that: they compute with numbers. &b ne consider some examples
of programs that work with numbers.

Integer Values

We start simple. Let’s compute a rectangle’s area and pe&ime

We first build a flowchart to make sure we know how we will apgtothe problem.
Then we can covert this to Java:

See Example: Rectangle

There are a few things to note in this program.

First, we are working with numbers rather than words. Thenges how we read the data from
the keyboard through oBcanner and the type of variable we need to declare to store that data.

For this example, we are requiring that the dimensions ofébtangle are integer values.

The Java type we will use to store an integer value is calladdn We declare and initializent
variables namedi dt h andhei ght to store the rectangle’s dimensions.

i nt is one of Java'primitive data typesWe will see several other examples. These are the only
types that are usually specified with an all-lowercase kegwo

We next need to use a different methodSsfanner to force it to look for an integer and return it
in as a Javant instead of &t ri ng. That method is calledext | nt .

Once we have our width and height, we need to compute the atepeaimeter from them. For

4

CSC 202 Introduction to Programming Fall 2012

this, we need to declare two marat variables and perform some computation to compute their
values.

If you remember your elementary school geometry, you knat tih compute the area of a rect-
angle, we multiply its width by its height. And to compute therimeter we add up the lengths of
all sides, which in this case is twice the width plus twice hiegyht.

Java uses a notation to specify mathematical computateomsathematicaéxpressioh that is
mostly familiar from math. As we can see from the statemeatt tomputesr ea, we use the
operator to specify multiplication.

So that statement instructs Java to multiply togethei thie value found in the variablei dt h
by thei nt value found in the variableei ght and store the product in thent variablear ea.

The computation oper i net er is a bit more complicated, but still pretty straightforwaiye
see that addition is specified byand that we can use numbers in our expressions as well asvalue
stored in variables.

We do need to know in what order Java will perform the openativere. If it doe2 * w dt h,
then adds 2 to that result, multiplying that resuly togi ght , we will get the wrong answer.
Fortunately, Java follows a striorder of operations In this case, we say that multiplication has
a higherprecedencéhan addition, so Java will compuge * wi dt h, then2 * hei ght, then
add together those results.

We will look in more detail at order of operations as we endeunther mathematical operators in
subsequent examples.

Finally, we print out our results. We can see here that Jasasdhe right thing” when we con-
catenate string literals withnt values.

Question: what happens if we type in something that’s notid vant ?

Floating-point Values

Our next example, which will be developed in class, is to@anfa simple miles per gallon com-
putation. Again, we will prompt for inputs, compute our aesyand report the result.

What do we need to know to make this example work?
¢ If we want to store non-integer values, which are cafledting-point value#n Java, we use
variables of typeloubl e instead of nt .
¢ If we want to read irdoubl e value from aScanner , we use thaext Doubl e method.

¢ Division is specified by thé operator.

See Example: MilesPerGallon

Note the difference between integer division and floating¥pdivision by trying the above first
with i nt data, then witldoubl e data.

CSC 202 Introduction to Programming Fall 2012

When we divide two nt values using , the result is theguotient and we throw away the remain-
der. If we want the remainder (and only the remainder), weusathe&operator, often called the
“mod” operator as it performs modulo arithmetic.

Any division operator where both operands arg values, results in annt quotient. Ifeither
operand (or both) is alreadydmubl e, the results is doubl e and the answer would include any
fractional part as a decimal.

Operator Precedence

We can specify complex arithmetic expressions using anybaaettion of the following:

* | multiplication
/ division

%/| remainder
+ addition

- subtraction

In a long expression such as
12 + 9/ 4 - 18 %4 = 19

there are choices to be made in how to evalulate. Fortunalalta makes these decisions and
makes it clear to us how it will evaluate such an expression.

1. unary negation operators are applied first, working left to righthere are multiple such
operations
2. multiplications, divisions, and remainders are comguagain left to right

3. additions and subtractions are computed, left to right

So in the above expression, we first check for unary negatantsthere are none.

Then, we do the multiplication, division, and remainder rapiens. Since these are all integer
values, the any division will be computed as an integral ignbt

So, the9d / 4 evaulates t@ first. Giving
12 + 2 - 18 %4 » 19
Next,18 % 4 is evaluated t@ (the remainder when we divide 18 by 4). Giving:

12 + 2 - 2 » 19

CSC 202 Introduction to Programming Fall 2012

One multiplication remains, so we compute ther 19 as38, giving:
12 + 2 - 38

We are left with only additions and subtractions, which arauated left to right.12 + 2 be-
comesl4, leaving us:

14 - 38

and after the last subtraction, we hav#4 for a final result.
The same rules apply if we have data in variables declareihes ent or doubl e values.

If we wish to override the default rules, just like in math, wen place parentheses around any
lower-precedence operation that we wish to have perforreéaré some higher-precedence oper-
ation, or if we want to change the order among same-precedgperations to do some further to
the right before some further to the left.

Named Constants

The next program, which we will develop in class is going tahefollowing:

e Read in 2 lines of input. Each contains the name of a baselatl (e’hich must be a single
word) and the number of runs that team scored.

¢ Report the total runs scored.

e Report the average number of runs per inning, both as a deamdahs a mixed number (a
whole number followed by a fraction).

See Example: RunsScored

This example is the first one that demonstrates an imporgattife of good programming style:
the use ohamed constants

In this case, we are going to assume a baseball game has g§snridut perhaps in some other
cases, there are 6 or 7 inning games. So we define a constant:

final int NUVBER OF | NNINGS = 9;

As our programs become more complex, we will be using manyemignvalues. Using many
somewhat arbitrary numeric values in a program can makertigrgam difficult to understand and
modify. We can improve the situation by associating theeslith names so that we are reminded
what the values signify when we see the names used.

7

CSC 202 Introduction to Programming Fall 2012

Java includes a mechanism to enable us to use such namedsvelfedf you include the word
“final ”in a variable’s declaration, this indicates that the vahgsigned to it in the declaration
will never change. This means that its value cannot be clthfppessibly by mistake).

It also means that we can change the value in just that one jlae decide to change the number
of innings in a game (at which point we would have to recompie program). Otherwise, we'd
need to remember to change all instances of the number if evegeld any.

A couple other notes from this program:

We read both &t r i ng and ani nt from the same keyboard input line.

We need to be careful that the addition of the two scores ane defore the string concate-
nation in our printout.

We need to be careful that the result of ount division does not throw away any fractional
part in the case where we want to store the resultdoabl e.

We use both integer division and the remainder operatortgcte our mixed number result.

