
Computer Science 202
Introduction to Programming
The College of Saint Rose
Fall 2012

Topic Notes: Java Fundamentals

We will proceed using a series of increasingly-complex problems to practice our problem solving
skills and to introduce and reinforce Java constructs and terminology.

By the time we get through this series of examples, you will have seen nearly everything presented
in Chapter 2 of Gaddis, though we will do so in a different (hopefully, better) order.

Glorified “Hello, World!”
The simplest class of programs are also the most excruciatingly boring – ones that just print out
the same message or set of messages every time we run them. Such programs are rarely useful in
practice and really serve only to introduce the basics of a programming language.

But let’s look at one anyway.

See Example: Seuss

This is basicallyHelloWorld all over, but there are a few little items that are new.

• Notice that the sentence “We know how.” is printed on the sameline as “Well, we can do it.”.
That’s because we used a different printing method for the latter: System.out.print.
This one works the same asSystem.out.println except that the output is not advanced
to the next line at the end.

• The last statement includes someescape sequencesthat cause the output to be formatted a
bit differently than it would otherwise appear. Escape sequences begin with a\ character
and are followed by acontrol characterthat defines the behavior of the sequence. Here, we
have three:

1. \t inserts a “tab” character, effectively indenting our output in this case,

2. \n advances the output to a new line, and

3. \" prints the double quote character, which would otherwise beimpossible since a
regular" character would be interpreted as the end of the text we are trying to print.

One bit of terminology at this point: the methodsSystem.out.println andSystem.out.print
are part of theJava API(Application Programmer Interface). Any valid Java installation comes
equipped with an extensive collection of pre-written software that our programs can use.



CSC 202 Introduction to Programming Fall 2012

Interactive Programs
To create nearly any interesting program, we need to be able to provide it with input. This will
allow the program to react differently when presented with different outputs.

Before we see how to do this in Java, we will make our first real use of Visual Logic.

We will develop the Visual Logic flowchart and run it.

Once we are convinced that our logic is correct (and that’s not hard, with such a simple problem),
we can go ahead and develop a Java program.

See Example: HelloYou

It might not seem like this should be much more complicated than our previous programs, but it
turns out that to do this in Java, we need to utilize a number ofnew ideas and Java constructs.

First, we need to figure out how to get information from the keyboard into our program. To do this,
we again turn to the Java API. There are several mechanisms available, a few of which we will see
this semester. But we will start with one called aScanner.

In order to use aScanner, we will need to tell Java that we intend to use it, by inserting the line:

import java.util.Scanner;

at the top of our program (before the class header). We will see later how to determine exactly
what to “import” to use various Java API functionality, but for now, just know that this is what we
need to do to use aScanner.

Then, in ourmain method, where we wish to access information from the keyboard, weconstruct
aScanner that we can use in our program. This is done with the line:

Scanner input = new Scanner(System.in);

There’s actually quite a bit going on in this line, and we’ll examine it more carefully in a minute.
But for now, we’re creating aScanner that usesSystem.in (which is Java’s cryptic way of
saying “what is typed at the keyboard”), and giving it a name,input. input is a variable,

2



CSC 202 Introduction to Programming Fall 2012

which is a fundamental construct in nearly any programming language, and again one that we will
examine more carefully in a moment.

Now that we have aScanner calledinput, we can ask it to give us the next chunk of text that
was typed at the keyboard. There are many possibilities for what we mean by “chunk” but for now,
we just want the word that someone types in as their name. Java’s Scanner provides a method
that does just that, callednext.

We will also need a name for the word that was typed in, so we canprint it out later. This is all
accomplished with the line:

String name = input.next();

Before we carry on further, we need to consider the concept of variables a little more closely.

A variable is a named storage location in the computer’s memory. We use avariable when we
have determined that there is some piece of data that we have in one Java statement, and we need
to remember that information for use in later statements.

When we need a variable in our program, we mustdeclarethat variable to Java, which is just a
fancy way of saying that we are going to introduce a name to ourJava program and tell Java what
type, or kind, of data we intend to store there.

A variable declaration takes one of two forms:

type name;

or

type name = initialValue;

where “type” is thedata type(or “ kind of data”) we will store, and “name” is the identifierwe
intend to use to refer to that data. In the second form, we alsoinitialize the variable to have a
specific value.

We will see many data types that store a variety of kinds of information. For now, we have two:

• Scanner – which is the keyboard input mechanism we wish to use

• String – a collection of text, like a word or sentence

We give ourScanner the nameinput and theString the namename.

When naming our variables, we need to keep in mind several considerations:

• The name must be a valid Java identifier. This means it must consist only of letters, numbers,
the dollar sign character, and the underscore character (though it can only start with a letter).

3



CSC 202 Introduction to Programming Fall 2012

• The name should follow Java’s naming conventions. Recall that for variables, we use lower-
case letters, except when we have a name that is made up of multiple words, in which case
we capitalize all but the first word.

• The name should be meaningful. That is, it should give some indication of what the variable
is to be used for. The names here satisfy that requirement:input implies that this is where
we get our input, andname implies that this is the name of something.

Once we have a variable, we can make use of its value later in our program. We do that here when
we call thenext method of ourScanner namedinput and when we use theString named
name in theSystem.out.println statement at the end of our program.

One last new idea here is that we now have something more complex as the text to be printed
by System.out.println. It’s not just some text in double quotes, but some text in double
quotes, followed by a+, followed by the name of ourString variable.

This is an example ofstring concatenation. We have thestring literal (i.e., some text inside double
quotes) to which we “append” the text in the variablename.

Working With Numbers
Computers often do just that: they compute with numbers. So next, we consider some examples
of programs that work with numbers.

Integer Values

We start simple. Let’s compute a rectangle’s area and perimeter.

We first build a flowchart to make sure we know how we will approach the problem.

Then we can covert this to Java:

See Example: Rectangle

There are a few things to note in this program.

First, we are working with numbers rather than words. This changes how we read the data from
the keyboard through ourScanner and the type of variable we need to declare to store that data.

For this example, we are requiring that the dimensions of therectangle are integer values.

The Java type we will use to store an integer value is called anint. We declare and initializeint
variables namedwidth andheight to store the rectangle’s dimensions.

int is one of Java’sprimitive data types. We will see several other examples. These are the only
types that are usually specified with an all-lowercase keyword.

We next need to use a different method ofScanner to force it to look for an integer and return it
in as a Javaint instead of aString. That method is callednextInt.

Once we have our width and height, we need to compute the area and perimeter from them. For

4



CSC 202 Introduction to Programming Fall 2012

this, we need to declare two moreint variables and perform some computation to compute their
values.

If you remember your elementary school geometry, you know that to compute the area of a rect-
angle, we multiply its width by its height. And to compute theperimeter we add up the lengths of
all sides, which in this case is twice the width plus twice theheight.

Java uses a notation to specify mathematical computations (a mathematicalexpression) that is
mostly familiar from math. As we can see from the statement that computesarea, we use the*
operator to specify multiplication.

So that statement instructs Java to multiply together theint value found in the variablewidth
by theint value found in the variableheight and store the product in theint variablearea.

The computation ofperimeter is a bit more complicated, but still pretty straightforward. We
see that addition is specified by+ and that we can use numbers in our expressions as well as values
stored in variables.

We do need to know in what order Java will perform the operations here. If it does2 * width,
then adds 2 to that result, multiplying that resuly byheight, we will get the wrong answer.
Fortunately, Java follows a strictorder of operations. In this case, we say that multiplication has
a higherprecedencethan addition, so Java will compute2 * width, then2 * height, then
add together those results.

We will look in more detail at order of operations as we encounter other mathematical operators in
subsequent examples.

Finally, we print out our results. We can see here that Java “does the right thing” when we con-
catenate string literals withint values.

Question: what happens if we type in something that’s not a valid int?

Floating-point Values

Our next example, which will be developed in class, is to perform a simple miles per gallon com-
putation. Again, we will prompt for inputs, compute our answer, and report the result.

What do we need to know to make this example work?

• If we want to store non-integer values, which are calledfloating-point valuesin Java, we use
variables of typedouble instead ofint.

• If we want to read indouble value from aScanner, we use thenextDouble method.

• Division is specified by the/ operator.

See Example: MilesPerGallon

Note the difference between integer division and floating-point division by trying the above first
with int data, then withdouble data.

5



CSC 202 Introduction to Programming Fall 2012

When we divide twoint values using/, the result is thequotient, and we throw away the remain-
der. If we want the remainder (and only the remainder), we canuse the% operator, often called the
“mod” operator as it performs modulo arithmetic.

Any division operator where both operands areint values, results in anint quotient. Ifeither
operand (or both) is already adouble, the results is adouble and the answer would include any
fractional part as a decimal.

Operator Precedence

We can specify complex arithmetic expressions using any combination of the following:

* multiplication
/ division
% remainder
+ addition
- subtraction

In a long expression such as

12 + 9 / 4 - 18 % 4 * 19

there are choices to be made in how to evalulate. Fortunately, Java makes these decisions and
makes it clear to us how it will evaluate such an expression.

1. unary negation operators are applied first, working left to right if there are multiple such
operations

2. multiplications, divisions, and remainders are computed, again left to right

3. additions and subtractions are computed, left to right

So in the above expression, we first check for unary negations, and there are none.

Then, we do the multiplication, division, and remainder operations. Since these are all integer
values, the any division will be computed as an integral quotient.

So, the9 / 4 evaulates to2 first. Giving

12 + 2 - 18 % 4 * 19

Next,18 % 4 is evaluated to2 (the remainder when we divide 18 by 4). Giving:

12 + 2 - 2 * 19

6



CSC 202 Introduction to Programming Fall 2012

One multiplication remains, so we compute the2 * 19 as38, giving:

12 + 2 - 38

We are left with only additions and subtractions, which are evaulated left to right.12 + 2 be-
comes14, leaving us:

14 - 38

and after the last subtraction, we have-24 for a final result.

The same rules apply if we have data in variables declared as eitherint or double values.

If we wish to override the default rules, just like in math, wecan place parentheses around any
lower-precedence operation that we wish to have performed before some higher-precedence oper-
ation, or if we want to change the order among same-precedence operations to do some further to
the right before some further to the left.

Named Constants
The next program, which we will develop in class is going to dothe following:

• Read in 2 lines of input. Each contains the name of a baseball team (which must be a single
word) and the number of runs that team scored.

• Report the total runs scored.

• Report the average number of runs per inning, both as a decimaland as a mixed number (a
whole number followed by a fraction).

See Example: RunsScored

This example is the first one that demonstrates an important feature of good programming style:
the use ofnamed constants.

In this case, we are going to assume a baseball game has 9 innings. But perhaps in some other
cases, there are 6 or 7 inning games. So we define a constant:

final int NUMBER_OF_INNINGS = 9;

As our programs become more complex, we will be using many numeric values. Using many
somewhat arbitrary numeric values in a program can make the program difficult to understand and
modify. We can improve the situation by associating the values with names so that we are reminded
what the values signify when we see the names used.

7



CSC 202 Introduction to Programming Fall 2012

Java includes a mechanism to enable us to use such names effectively. If you include the word
“final” in a variable’s declaration, this indicates that the valueassigned to it in the declaration
will never change. This means that its value cannot be changed (possibly by mistake).

It also means that we can change the value in just that one place if we decide to change the number
of innings in a game (at which point we would have to recompileour program). Otherwise, we’d
need to remember to change all instances of the number if we changed any.

A couple other notes from this program:

• We read both aString and anint from the same keyboard input line.

• We need to be careful that the addition of the two scores are done before the string concate-
nation in our printout.

• We need to be careful that the result of ourint division does not throw away any fractional
part in the case where we want to store the result in adouble.

• We use both integer division and the remainder operator to compute our mixed number result.

8


