Computer Science 202

Introduction to Programming
The College of Saint Rose
Fall 2012

Topic Notes: Conditional Execution

All of our programs so far have had one thing in common: they emtirely sequential. The
statements in oumai n methods all execute, one after another, in the order thegrazeuntered
in our program.

While this is useful in many cases, we would like to move beytivad and have our programs
start tomake choices. We would like to be able to check for a certain conditionhk tondition is
“true” we would like to do one thing, if it's “false” we wouldalsomething else or possibly nothing
at all.

Thinking of every day algorithms, this is something we dadladl time.

o If I am still hungry, I will go for seconds.

e Ifitis a weekday, | will set my alarm to get up for class. Othise, | will sleep as long as |
would like.

¢ If the dough is too watery, add more flour.

e If the student’s score is at least 95% on the spelling testasticker at the top.

Visual Logic’s If Condition
We will begin our exploration of this idea with Visual Logigsing the “If Condition”.

We will develop a small program that asks what year you wera,land prints out a message that
depends on that.

In the “If Condition” in Visual Logic, we can specify lboolean condition — something that eval-
uates to either true or false — and depending on that rebalgxecution will continue on one of
two paths.

Our program will print out your age, and an extra message ufwere born before 1995 (when
Java was born).

Java’'si f Statement

Java has a construct that does the same thing. We will looksimmlified version first: one that
either does something or not.

The basic form is

CSC 202 Introduction to Programming Fall 2012

I f (<bool ean condition>) ({
statenent 1;
st at enent 2;

where<bool ean condi ti on> is some Java expression that evaluatesrtoe orf al se. If
it evaluates td r ue, the statements inside the curly braces following the dandare executed.
Otherwise, they are skipped.

Let's use this to develop our program.
See Example: OlderThanJava

There are many things that can be used to construct a bookgaession, but we will start with
the standard relational operators and use them to comparerituvalues.

Expression Whenisitrue?

X >y whenx is greater tharyy

X <y whenx is less thary

X >=y whenx is greater than or equal to
X <=y whenx is less than or equal tp

X == whenx is equal toy

X =y whenx is not equal toy

Java’si f - el se Construct

Thei f statement we saw above allows us to execute a statementug gfcsstatements if the
condition is true. Often, we want to execute one set of statgsif the condition is true and
another set if the condition is false.

In Visual Logic, we can do this by placing flowchart symbolsloa “false” side of the If Condition
symbol as well as on the “true” side.

We will expand ourd der ThanJava program to do this. Here, we print a different message if
the person is younger than or the same age as Java (in additibe previous message when the
person is older).

In Java, we can use thd - el se construct.

i f (<bool ean condition>) {
st at enent 1A;
st at enent 1B;

}

el se {

CSC 202 Introduction to Programming Fall 2012

st at enent 2A;
st at enent 2B;

where<bool ean condi ti on>is some Java expression that evaluatdsrtoe orf al se.

See Example: OlderYoungerThanJava

Another Example, Adding in JOpt i onPane I/O

We will next consider another exampleidf statements in Java, but with the added bonus of using
a different mechanism for input and output.

The problem: we wish to write a program that calculates theber of full payments needed for
a no-interest loan where we are given a loan amount and desioathly payment. This number
is reported. If additional funds are due after those fullpapts are made, that is reported as well.

See Example: NolnterestLoan

The comments in that example describe in detail three nemsite

e The use oflOpt i onPane. showl nput Di al og to bring up a dialog box with a message
and a text box for input, and returning the text typed intolitbr as &St r i ng.

e The use of Javaknt eger . par sel nt method to convert 8t r i ng to ani nt, which is
necessitated here becauseif@pt i onPane. show nput Di al og only returnsSt r i ng
values.

e The use of Java’dOpt i onPane. showvessageDi al og to bring up a dialog box to
display some program output.

Nested Conditionals

There is nothing stopping us from putting conditionals diesof conditionals. Consider this
decision-making problem of whether it's a good idea to chotsses tomorrow so we can go
skiing.

Suppose we are only willing to go skiing if the temperatur# e no higher than 50 and there is
at least 6 inches of snow on the ground in the mountains.

We will first build a Visual Logic flowchart for this. We can askher of the questions (temperature
or snow cover) first, and if that response doesn’t disqud#tié/day as a ski day, only then will we
ask the other. Let's ask temperature first, then if the teatpes is cool enough, ask about the
Snow cover.

CSC 202 Introduction to Programming Fall 2012

All we really need to understand here is that any flowcharheld, including an If Condition, can
be placed on one of the branches of the If Condition.

See Example: ShouldWeSki

When we convert this to Java, we will place prompt that readsnith the entire condition that
checks for a deep enough snow cover within the “if part” (tee ghat happens if the temperature
is below 50).

Java'si f - el se-i f Construct

Our next example is a program that asks for the user's naméa@metown, then displays a mes-
sage that indicates whether the length of (number of chensairt) the name is more than, less than,
or the same as the length of the town.

Again, we can construct a Visual Logic flowchart. We know nafsivhat we need to do this, the
exception being how we can compute the length of a string.

In Visual Logic, we can compute the length of a string (if ¢alleds) with
| engt h('s)

We can then use the number returned as part of our conditioled¢me which branch of an If
Condition we should take.

Note that there are 3 possible cases: the name is shorteowhes shorter, or they are the same
length. Since an If Condition only has two choices, we willche®re than one If Condition.

See Example: NameAndTown

For this conversion to Java, we could do a nesteds we did for the previous example. However,
there is a variant on thef - el se construct that allows us to check multiple conditions in a
sequence and (optionally) perform an “otherwise” caseeetid.

It is sometimes called the “if else-if” construct, and lodks this:

if (condl) {
/! condl true stuff

}
else if (cond2) {

/1l cond2 true stuff (only can happen if condl fal se)

}
else if (cond3) {

/'l cond3 true stuff (only can happen if condl and cond2 fal se)

}

else if (condn) {

CSC 202 Introduction to Programming Fall 2012

/1 condn true stuff (only can happen if all previous conds false)

}
el se {

/1l "otherwi se" -- will happen if all previous conds false
}

In our program we can see that construct where we first chettieihame is shorter. If not, we
check if the name is longer. If neither was true, then theytrhase been equal in length, so the
final el se is executed.

Also notice that we also have a mechanism in Java to compeatenigth of &St r i ng.

So far, we have made use of only a fraction of the capabildfe¥ava’'sSt r i ng class. All we
have done is to declare variables capable of hol@nhgi ng references, assight r i ng values
to them, and use those values in constructing outputs.

There are many methods provided by Jawt's i ngs and we will see a lot of them in coming
weeks. For now, we just need the one that can giveS$tsra ng’s length.

If we have aSt r i ng in a variables, we can compute its length with

s.length();

With this available to us, we can complete the example pragra

Boolean data and boolean expressions

Our discussion of conditional execution needs to includeolt bt more complex boolean expres-
sions.

The common boolean expression operators are

e arithmetic comparisons:= to test for equality! = to test for inequality, and the inequality
tests:<, <=, >, and>=.

e &&, which is theand operator. Its result isr ue if both of its operands evaluatestto ue.

| | , which is theor operator. Its result isr ue if either of its operands evaluatesttoue.

I —which evaluates to the boolean opposite of its only operand

We will encounter all of these in meaningful examples goiogvard, but for now, we can see
many of them in action in this example.

See Example: BooleanDemo

See the comments therein to see some details.

5

CSC 202 Introduction to Programming Fall 2012

In particular, note the precedence of these opera&#ss evaluated beforg| , much like multi-
plication is evaluated before addition in an arithmeticresgion.

Important note: you need to be very careful that you do spéedse operators & and| | rather
than& and| . The single-character operators will perform a bitwise @l rather than a logical
and (or), which is not usually what you want..

Armed with these constructs and a few more we will see in tkesrgle, we can now tackle a more
complicated problem.

See Example: MassPikeTolls
The comment at the top of the Java program describes thegonobl

This is a complex enough decision problem that we shoulddkstch out a flowchart in Visual
Logic.

We will need to use the boolean operators in Visual Logic.civfare a bit different:
e arithmetic comparisonss to test for equality<> to test for inequality, and the inequality
tests:<, <=, >, and>=.
e AND, which is theand operator. Its result isr ue if both of its operands evaluatestto ue.
e OR, which is theor operator. Its result isr ue if either of its operands evaluatesttoue.

e | —which evaluates to the boolean opposite of its only operand
We end up with 3 possible outputs:
e There is a full toll if both entry and exit were at an intercgamumbered 6 or higher, or if

we are driving a truck.

e There is no toll if both entry and exit were at an interchangmbered 6 or lower, and we
are not driving a truck.

e There is a toll on only part of the trip (east of interchangé @)e entered or exited on one
side of interchange 6

See the comments throughout the Java program for more iat@m Note in particular these new
Java methods and constructs:

e The use oSyst em exi t (1) to terminate the program when an error occurs (in this case,
an invalid input was encountered).

e The use of a more complex form diOpt i onPage. showiessageDi al og to more
clearly indicate an error message as opposed to an infanatmessage like those we
have used previously.

CSC 202 Introduction to Programming Fall 2012

e The use of thé&t ri ng’s equal s method to compargt r i ng values. We cannot use=
to comparest r i ngs for equality in most cases. Java will accept it, but it doztshave the
meaning we wish it to have in this context. More on this latethie semester.

The swi t ch Statement

A common pattern in programming is to have a series of statesvod the form:

if (x == 0) {

/] do stuff for x ==
}
else if (x ==1) {

[/ do stuff for x ==
}
else if (x == 2) {

[/ do stuff for x ==

}

else if (x == 8) {
/[l do stuff for x ==
}
el se {
/1l do stuff when x is none of the above
}

Let’s look at an example where this occurs. Consider a proghamtells you which Computer
Science faculty member you can find in each of the offices ithertus 400 suite.

See Example: CSOfficeslfElse

Java (and many other languages) provide a special consteucan use in situations like this that
can be a bit more convenient.

switch (x) {

case O:
[/ do stuff for x ==
br eak;

case 1.
/[l do stuff for x ==
br eak;

case 2:
/[l do stuff for x ==
br eak;

CSC 202 Introduction to Programming Fall 2012

case 8:
/[l do stuff for x ==
br eak;
defaul t:
/1 do stuff when x is none of the above
br eak;

This works only when the comparison if for equality and we aseng one of these data types:
char, byt e, short, ori nt. So far, we have only usadt variables from among this group.
Note that it does not work faoubl e or St r i ng values.

Also note that eachase is ended by a special statemebt:eak;
If we rewrite the example to usesam t ch statement, it would look like this:
See Example: CSOfficesSwitch

If we mistakenly leave out br eak; statement, Java will “fall through” to the nexase. Some-
times this is handy and just what we want, but the vast mgjofithe time, we want &r eak; at
the end of casease.

One situation where this does come in handy is when we wan thel same thing for multiple
cases:

See Example: LittlePrimes

Formatting Output

Our next example has more conditionals, but also shows howamenicely format output that
contains floating point numbers.

See Example: Payroll

The key points to notice from this example:

e The use of named constants for numbers that are unlikelyanggfrom one execution of
the program to the next.

e The declaration of variables that will be assigned insiée fh el se before tha f - el se.
If they were defined within the body of thé parts and/oel se part, those variables would
exist onlywithin those blocks of code.

e The declaration, construction, and usebetti mal For mat objects to format our floating-
point output. See the text for more examples. The essentials

— Like Scanner andJOpt i onPane, we need to tell Java if we intend to usBeci mal For mat
with

CSC 202 Introduction to Programming Fall 2012

i mport java.text. Deci mal For mat ;

— Before we make use of one, we need to declare a variable oDgpenmal For mat
and construct an instance. The parameter we pass toass uctor is the number of
digits and any other characters we want. There are two exaplthis proram, more
in the text.

— When we want to print out a floating point value as formattedryaf theséeci mal For mat
objects, we pass the floating point value to the objdadsmat method. This returns
aSt r i ng representation of that value using the specified format.

