Computer Science 120

Introduction to Programming
SIENAcollege siena College

Computer Science Sprlng 2012

Topic Notes: Searching and Sorting

Sear ching

We all know what searching is — looking for something. In a paiker program, the search could
be:

e Looking in a collection of values for some specific value (véhis the 17 in this array of
i nt?).

e Looking for a value with a specific property (which object be tanvas contains the location
where | clicked the mouse?).

e Looking for a record in a database (what is the tax historyther last four years for the
taxpayer with SSN 101-11-1009?).

e Searching for text in some document or collection of docusémwhat web pages contain
the text “searching and sorting algorithms?”).

e What known amino acid sequences best match this sequencaaghtinom proteins in a
given virus?

We have done some searching this semester. Remember the gestwhich image was selected
in the “DragStudents” example.

for (int imageNum = 0; inmageNunxheads. | ength; inmgeNum++) {
I f (heads[imgeNuni.contains(point)) {
sel ect edHead = heads[i mageNuni ;
draggi ng = true;
sel ect edHead. sendToFront () ;
}
}

We have to search through our collection of objedisqi bl el mages) to see which one, if any,
contains the point.

How do we know that we're done searching? In this case, we keqing until we get to the end
of our array. But in many cases (remembergle¢ | ndexOf method in the drawing dots lab), we
need only search until we find the first matching entry.

CS 120 Introduction to Programming Spring 2012

Let’s try to get some idea of how much “work” it takes for us &t gn answer. As a rough estimate
of work, we will count how many times we call tleont ai ns method of avi si bl el mage.

If we haven Vi si bl el mages, how many calls to th¥i si bl el mage cont ai ns method will
we have to make before we know the answer? In this case, it's par entry in the array, so
times.

In some other cases, like tlgeet | ndexOf method in the drawing dots lab, it depends on how
quickly we find the answer. If none of th8 si bl el mages contains the point at all, we need to
check alln before we know the answer. If one does contain the point, west@p as soon as we
find the first one that contains it. It might be the first, it ntidgpe the last — we just don’t know.
Assuming that there’s an equal probability that Yiesi bl el nage that contains the point is at
any of then positions, we have to examine, on averag#i si bl el mages.

In this case, we can’t do any better. Perhaps if we decideleolcin some other order rather than
always examining the first, then the second, and so on.

We are searching in an array, where we have the option to lbakyaelement directly. We will
consider an array afnt , though most of what we discuss applies to a wider range afrtéable”
items.

A method to do this:

| *
* Search for numin array. Return the index of the nunber, or
* -1 if it is not found.
* [
int getlndexOrNun(int[] array, int nunm {
for (int index = 0; index < array.length; index++) {
I f (array[index] == nun) {
return index;
}
}

return -1;

}

The procedure here is a lot like the searches we have seenawWenh way of knowing that we're
done until we either find the number we're looking for, or unté get to the end of the array. So
again, if the array contains numbers, we have to examine alin an unsuccessful search, and,
on averagey; for a successful search. We could instead search from théoethé front, and we
would have no reason to believe that we’'d do any better oreyans average.

Now, suppose the array has been sorted in ascending order.

Well, we can do the same type of search — start at the begimmddceep looking for the number.
In the case of a successful search, we still stop when we firi8uit now, we can also determine
that a search is unsuccessful as soon as we encouter any miangiee than our search number.
Assuming that our search number is, on average, is going fioumel near the median value of the

2

CS 120 Introduction to Programming Spring 2012

array, our unsuccessful search is now going to require teaxamine, on averagg,items. This
sounds great, but in fact is not a really significant gain, asw¥ see. These are all examples of a
linear search — we examine items one at a time in some linear order until wetfie search item
or until we can determine that we will not find it.

But there is a better way. To get the intuition for the next wagearch for a number, think back
to your favorite number guessing game. | pick a number betviesnd 100 and you have to guess
what it is. The game usually goes something like this:

Me: QGuess ny nunber
You: 50.

Me: Too High.

You: 25.

Me: Too Low.

You 37.

Me: Too High.

You 31.

Me: That's right.

If you know that there is an order — where do you start yourcdgatn the middle, since then even
if you don't find it, you can look at the value you found and seté search item is smaller or
larger. From that, you can decide to look only in the bottorti bfthe array or in the top half
of the array. You could then do a linear search on the apptgphalf — or better yet — repeat the
procedure and cut the half in half, and so on. This lsrary search. It is an example of aivide
and conquer algorithm, because at each step, it divides the problemlfn ha

A Java method to do this:

| *

* Binary Search for numin array.

* [

int getlndexOFNum(int[] array, int num {
int md;
int left = 0;

int right = array.length - 1,
while (left < right) {
md = (low + high) / 2;
I f (array[md] == num {
/1 numis sanme as m ddl e nunber
return md;
} else if (num< array[md]) {
/1 numis smaller than m ddl e nunber
right = md - 1;
} else {
/1 numis larger than m ddl e nunber

3

CS 120 Introduction to Programming Spring 2012

left = md + 1;
}
}

return -1;

}

How many steps are needed for this?

e Each time, we cut the part of the array we still need to seard¢ialif.

e How many times can divide number in half before you get to 1?

If you start withn, you divide to get then?, ¢, ... and eventually get 1.

Let’s suppose that = 2%, then divide ta@*—1, 2k=2 2k=3 . 20 = 1; dividek times by 2.

In general, we can divide by 2 at mostog, n times to get down to 1.

So how much better is this, really? In the case of a small athaydifference is not really signifi-
cant. But as the size grows...

Search#elts 10 100 1000 1,000,000
linear 10 100 1000 1,000,000
binary 8 14 20 40

That's pretty huge. Even if you think about the search remdlgding on averagg steps, for the
1000-element case, the binary search is still winning 50B0to The logarithmic factor is really
important.

We can see this better by looking at graphs.ofs.log n andn. The difference is large, and gets
larger and larger as gets larger. Even if we multiply by constant factors in aemfgt to make the
log n graph as large as thegraph, there will always be a value oflarge enough that the scaled
function forn will be larger than the scaled function flarg ». More on this later.

Sorting

We’ll now look at sorting, since we will need to be able to somtarray to use binary search. As
we will see, sorting takes a fair amount of time, but if we anéng to be searching a large array a
lot, the savings obtained by using binary search over limélhmore than make up for the cost of
sorting the array once.

Suppose our goal is to take a shuffled deck of cards and totsoscending order. We’'ll ignore
suits, so there is a four-way tie at each rank.

Describing a sorting algorithm precisely can be difficukt’s consider a couple.

1. selection sort

CS 120 Introduction to Programming Spring 2012

2. insertion sort

Selection Sort

First, we will look at this procedure:

e Search for the smallest card, and move it to the front of tlo&de
e Search for the next smallest card, and move it to the secasitigpoin the deck.

What | have described is a form ofdection sort — at each step, we select the item that goes into
the next position of the array, and put it there. This getsnessiep closer to a solution.

public void selectionSort(int[] array) {

for (int i =0; I < array.length - 1; i++) {
int smallestPos = i;
for (int j =1i+1; j < array.length - 1; j++) {

if (a[j] < a[small estPos) {
smal | estPos = j;

}
}

int tenp = array[smal | est Pos];
array[smal | est Pos] = array[i]

array[i] = tenp;

How long does this algorithm take? As we did with searchingwen't try to calculate an exact
time, but we will estimate the cost by computing the numbecahparisons done in sorting an
array. We could alternately choose the to count the totalbmurof “visits” to an array element,
but the “shape” of the answer will be the same no matter whichese we compute.

Suppose the original array haslements, where > 1. Then it takes: — 1 comparisons to find
the smallest element of the array (compare the first with geersd, the largest of those with the
third, etc.). In general, the number of comparisons needddd the smallest element is one less
than the number of elements to be sorted. Once this elemerid®n put into the first slot of the
array, we need to sort the remaining- 1 elements of the array. By the argument above, it takes
n — 2 comparisons to find the largest of these. We continue witkhessive stages taking— 3,

n — 4, all the way down to the last pass through when there are adyetements and it takes only

1 comparison. (Once we get down to 1 element there is notbibg tone.)

CS 120 Introduction to Programming Spring 2012

Thus ittakesS = (n — 1) + (n — 2) + (n — 3) + ... + 3 + 2 + 1 comparisons to sort a list of
elements. We can compute this sum by writing the list forwandd backwards, and then adding
the columns:

S=(n-1) +(n-2) + (n-3) + ... + 3 + 2 + 1
S = 1 + 2 + 3 + ... +(n-3) + (n-2) + (n-1)
2S = n + n + n + ...+ n + n + n = (n-1)*n

ThereforeS = "227". The graph of this as increases looks like> — a parabola. Therefore,
selection sort takes? time, which is much worse than the behavior for the searchiggrithms
we saw last time.

Insertion Sort

The selection sort builds up the sorted list by finding the Ieand putting it into the first
position, the sthe second smallest and putting it into therse position, etc., until the entire listis
sorted.

Insertion sort takes a different approach. It builds up #esblist by noticing that we can build a
sorted list of sizen + 1 by taking a sorted list of size and inserting the: + 1% element in its
correct position.

We will not look at this algorithm in great detail here. Likelsction sort, insertion sort takes
time.

