
Computer Science 120
Introduction to Programming
Siena College
Spring 2012

Topic Notes: Collections

Our next major topic involves naming collections of items. But first, we will look at a loop con-
struct that we will often make use of in that context.

for Loops
We have usedwhile loops in a number of contexts, one of which is for counting. For example,
in the falling snow example, we had the followingrun method:

int snowCount= 0;

// continue creating snow until the maximum amount
// has been created
while (snowCount < MAX_SNOW) {

snowCount = snowCount + 1;

new FallingSnow(canvas, snowPic,
snowGen.nextValue(), // x coordinate
snowGen.nextValue()*2/canvas.getWidth()+2); // y speed

pause(FLAKE_INTERVAL);
}

If we carefully examine the loop in the falling snow example above, we can see that it has the
following structure:

int counter = 0;
while (counter < stopVal)
{

// do stuff
counter++;

}

It turns out that we can use a different construct that localizes the code dealing with counting so
that it is easier to understand. This construct is called afor loop. You would use it for counting
by saying the following:

CS 120 Introduction to Programming Spring 2012

for (int counter = 0; counter < stopVal; counter++)
{

// do stuff - but omit counter++ at end
}

The code in the parentheses consists of 3 parts; it is not justa condition as inif or while
statements. The parts are separated by semicolons. The firstpart is executed once when we first
reach thefor loop. It is used to declare and initialize the counter. The second part is a condition,
just as inwhile statements. It is evaluated before we enter the loop and before each subsequent
iteration of the loop. It defines the stopping condition for the loop, comparing the counter to the
upper limit. The third part performs an update. It is executed at theend of each iteration of the
for loop, just before testing the condition again. It is used to update the counter.

How would we rewrite the falling snow example to use afor loop?

See Example: FallingSnowFor

Essentially we have taken three lines from the abovewhile loop version and combined them into
one line of thefor loop version. Because we included the declaration of the counter inside the
loop (see “int snowCount”), it is only available inside the loop. If you try to use it outside of
the loop, Java will claim to have never heard of a variable with that name.

Notice how the for localizes the use of the counter. This has two benefits. First, it simplifies the
body of the loop so that it is somewhat easier to understand the body. More importantly, it becomes
evident, in one line of code, that this is a counting loop.

Other variations

Many variations are possible and we will see them frequentlythroughout the remainder of the
course. For example, we couldcount down instead of up:

for (int countdown = 10; countdown >= 1; countdown--)
{

System.out.println(countdown);
}
System.out.println ("Blast off!");

Summary of for loops

The general structure of afor statement is the following:

for (<initialization>; <condition>; <update>)
{
<code to repeat>

}

2

CS 120 Introduction to Programming Spring 2012

• The initialization part is executed only once, when we first reach thefor loop.

• The condition is executed before each iteration, includingthe first one.

• The update part is executed after each iteration, before testing the condition.

When should you use afor loop instead of a while loop:

• Definitely use for loops when counting!

• Initialization, condition, update all are expressed in terms of the same variable

• The variable is not modified elsewhere in the loop.

• It is correct to do the update command as the last statement inthe body of the loop.

Motivation for Collections
Sometimes we have a lot of very similar data, and we would liketo do similar things to each datum.
For example, suppose we wanted to extend our “Drag2Shirts” example to have 4 shirts instead of
just 2.

See Example: Drag2Shirts

We could go through the program and everywhere we seeredShirt andblueShirt, add 2
more variables and 2 more segments of code to deal with the new2 shirts.

See Example: Drag4Shirts

That was not terribly painful, but a bit tedious and error prone. Now, what if we wanted to create
10, 20, or 100 shirts to be dragged around the canvas. We’d want a better way to name the shirts
as a group.

Java and other programming languages provide a number of mechanisms to help here. We will
consider two in Java. First, we will look at a Java class called theArrayList, and later a lower-
level construct common to most modern programming languagecalledarrays. Each allows us to
use one name for an entire collection of objects.

The Java ArrayList Class
Those of you who will go on to take data structures will learn about a variety of ways that collec-
tions of data can be stored that vary in complexity, flexibility, and efficiency. We will consider just
one of those structures here: theArrayList.

ArrayList is a class that implements anabstract data type provided by the standard Java utility
library.

3

CS 120 Introduction to Programming Spring 2012

Let’s see how to use them through an example: we will replace the 4 names ofTShirt objects in
the “Drag4Shirts” example with a singleArrayList that holds all 4.

See Example: Drag4ShirtsArrayList

This program has the same functionality, but the 4 variablesfor theTShirts has been replaced
by a single collection, anArrayList of TShirt objects.

We consider each change that was made to the program to see thebasic usage of anArrayList.

• First, if we want to make use of a Java class not in the folder with our Java files, we need
to tell Java this. Like we have seen for ObjectDraw and thejava.awt classes, we need to
add animport statement to the top of our program. In this case,

import java.util.ArrayList;

This allows us to use the class nameArrayList in the rest of the file and Java will know
we mean to use the one in thejava.util package.

• Next, we declare an instance variable for ourArrayList:

private ArrayList<TShirt> shirts;

This looks a little different than any variable declarationwe have seen before. Since an
ArrayList can be used to hold objects of any type, we need to tell Java what type of
objects will be stored in this particularArrayList. In this case, it’sTShirts. So we
place that type inside the< and>. This is called atype parameter.

• Like most Java classes, we need to construct an instance of the class in order use it. This is
done in the first statement of thebegin method:

shirts = new ArrayList<TShirt>();

This is much like other constructions we have seen, but we again need to include the type
parameter so Java will give us anArrayList that is set up to hold a collection ofTShirt
objects.

• TheTShirt instances are then created, and we need to insert each into theArrayList.
This is done with theadd method:

shirts.add(shirt);

4

CS 120 Introduction to Programming Spring 2012

This will take theTShirt namedshirt and add it to the first available slot in theArrayList
namedshirts.

Note that in this case, we are not requesting any specific location within theArrayList
for the shirt. We will later see that we can be more specific here.

Note also that we as users of theArrayList do not know (though when you take data
structures, you’ll have a pretty good idea) of what’s going on inside theArrayList to add
the shirt. We just know that it knows how to do it.

When we’re done withbegin, theArrayList contains references to 4TShirt objects.

• In theonMousePress andonMouseExit methods, we need to access theTShirt ob-
jects within theArrayList. We do this with theget method:

TShirt shirt = shirts.get(shirtNum);

Here,shirtNum is a loop index variable that will range from 0 to one less thanthe number
of items in theArrayList. We know in this case that there are 4 items, but we can get that
information from theArrayList itself using thesize method, as done in thefor loops:

for (int shirtNum = 0; shirtNum < shirts.size(); shirtNum++)

What we see here is that theArrayList has assigned a number, often called anindex,
to eachTShirt we added to theArrayList, and we can pass that number to theget
method to get back a specificTShirt from theArrayList.

It turns out that the first item we add is given index 0, the nextis given index 1, and so on. If
we later wanted to get at the first one, we could say:

shirts.get(0);

but in many cases (like this one), we will access the items within a collection inside a loop,
passing in a loop index to theget method.

This is our first example of asearch operation on a collection – we are looking through each
object in the collection to find one that contains theLocation. More precisely, this is a
linear search and we will say more about this later.

One of the great things about using a construct like anArrayList is that we can extend our
programs to keep track of a much larger number of objects. If we want to have 10TShirts on the
canvas, we would definitely want to use a collection like anArrayList to keep track of them.

See Example: Drag10Shirts

Here, we also place the creation of theTShirts into a loop, but just line them up in a row for
simplicity. If we wanted them to be organized into rows or to use a fixed set of colors, we would
need to use a more complicated loop in thebegin method. (And we will do just that later.)

5

CS 120 Introduction to Programming Spring 2012

If we wanted to create 20 or 50 or 100Tshirts, we could do so by changing the loop in the
begin method and the remainder of the code does not need to change.

ArrayLists in Custom Objects

One of the challenges we have seen with constructing custom objects with any level of complexity
is that we need to have names for all of the graphical objects we construct. When the object
includes large numbers of items, ideally created within a loop, anArrayListwill come in handy
to help keep track of them.

First, we look at a program that doesn’t useArrayLists:

See Example: DrawRoads

This program draws little segments of roads when we click themouse. Nothing is new here – we
could have written this a while ago.

But now suppose we want to be able to drag one of these around.

We need to have names for all of the components of the road segment so we can do things like
move it and check for containment of a point.

See Example: DragRoads

The enhancements to theWindowController class are all very familiar.

It’s in theRoadSegment class that we make use of anArrayList to hold the center stripes of
our road segment. Notice the same steps: declare a variable with anArrayList type that can
hold objects of the appropriate type, construct it withnew, thenadd entries with the appropriate
types of objects.

In the constructor, we do the construction of theArrayList, then create the actual stripes.

In themove method, we loop through the stripes, moving each one.

This is nice, but perhaps we want to combine this functionality with that of the program where
we could drag around any of 10 shirts. Let’s use anArrayList to keep track ofall of the road
segments we’ve created, so we can dragany segment, not just the most recently drawn one.

See Example: DragAllRoads

Here, in addition to having anArrayList to keep track of the components of one of the road
segments, we keep anArrayList of RoadSegment objects in theWindowController
class.

Removing from an ArrayList

We can augment the last example to remove each road segment from the canvas and from the
ArrayList. A road segment will be removed if it is being dragged when themouse leaves the
window.

See Example: DragAllRoadsRemove

6

CS 120 Introduction to Programming Spring 2012

The new functionality is in theonMouseExit method of theDragAllRoadsRemove class.
If the dragging flag is true when the mouse leaves the window, the currently-dragged segment
selectedSegment) should be removed. We first remove it from the canvas, then remove it from
theArrayList. We also setdragging back to false, since the object we were just dragging no
longer exists.

First, we will look at the removal from the list, which is donewith theArrayList’s remove
method. We pass as a parameter the element we want to remove, and if it is an element of the
list, it is removed. It is important to note that when we remove an element from anArrayList
with remove, any subsequent entries will be “moved up”. That is, if a listcontains 5 elements
(in positions numbered 0 through 4) and we remove the elementat position 2, theArrayList
implementation ofremove will shift the element that was in position 3 into position 2,and the
one that was in position 4 into position 3. This means we can still use ourfor loop over the
numbers from 0 tosize()-1 to visit all of our entries. In other words,remove does not leave
a “hole” at the index from which the element was removed.

The newremoveFromCanvas method is mostly like the ones we have seen in previous exam-
ples: to remove the custom object, we remove each of its components. The difference here is that
we need to loop through theArrayList, get and thenremove each element. We also should
remove the individualFilledRects from theArrayList, which we do all at once with the
clear method.

We can also remove elements from anArrayList by index rather than value. We will see
examples of this soon.

Other ArrayList methods

The examples above demonstrated just a few of the capabilities of theArrayList class: con-
struction,add, get, size, remove, andclear.

The full documentation for theArrayList can be found athttp://docs.oracle.com/
javase/6/docs/api/java/util/ArrayList.html

Here are a couple of additional methods, some of which will come up in later examples.

• contains – determine if a given object is in the list

• indexOf – search for first occurrence of a given object in the list and return its index

• set – replace the contents at an index with a new element

A few more examples to bring some of this together:

See Example: MovingFlags

See Example: PongBricks

Java Arrays

7

CS 120 Introduction to Programming Spring 2012

TheArrayList is a Java class, provided as a standard utility with every Java environment. But
it is built on top of a more fundamental programming languageconstruct called anarray.

In mathematics, we can refer to large groups of numbers (for example) by attaching subscripts to
names. We can talk about numbersn1, n2,... An array lets us do the same thing with computer
languages.

Suppose we wish to have a group of elements all of which have typeThingAMaJig and we wish
to call the groupthings. Then we write the declaration ofthings as

ThingAMaJig[] things;

The only difference between this and the declaration of a single item of typeThingAMaJig is
the occurrence of “[]” after the type.

Like all other objects, a group of elements needs to be created:

things = new ThingAMaJig[25];

Again, notice the square brackets. The number in parentheses (25) indicates the maximum number
of elements that there are slots for. We can now refer to individual elements using subscripts.
However, in programming languages we cannot easily set the subscripts in a smaller font placed
slightly lower than regular type. As a result we use the ubiquitous “[]” to indicate a subscript.
If, as above, we definethings to have 25 elements, they may be referred to as:

things[0], things[1], ..., things[24]

We start numbering the subscripts at0, and hence the last subscript is one smaller than the total
number of elements. Thus in the example above the subscriptsgo from 0 to 24.

One warning: When we initialize an array as above, we only create slots for all of the elements,
we do not necessarily fill the slots with elements. Actually,the default values of the elements of
the array are the same as for instance variables of the same type. If ThingAMaJig is an object
type, then the initial values of all elements isnull, while if it is int, then the initial values will
all be0. Thus you will want to be careful to put the appropriate values in the array before using
them (especially before sending message to them! – that’s aNullPointerException waiting
to happen).

In many ways, and array works like anArrayList, but we will see several differences.

Armed with this new construct, let’s revisit the shirt dragging program to use arrays.

See Example: Drag10Shirts

In this code, we we have a single array namedshirts. This array is declared as an instance
variable, constructed at the start of thebegin method, and given values (references to actual
TShirts) just after.

8

CS 120 Introduction to Programming Spring 2012

Then in theonMousePress method, we loop through all of the array entries (as we did previ-
ously with anArrayList) to determine which, if any, has been pressed. Finally, inonMouseExit,
we tell all of the shirts to move back to their starting positions.

Let’s see how this differs from theArrayList version.

• Our instance variable declaration looks a bit different.

• When we construct the array in thebegin method, we need to tell it how many elements
the array will hold (in this case, 10). With theArrayList, we construct a list and we can
add as many things to it as we want. The array can only ever holdthe number of elements
we provided when we constructed it.

• When we add items to the array, we need to specify the index explicitly. There is no way to
say “just add it to the end” the way we do withArrayLists.

• When we access array elements, we use the bracket notation in much the same way we use
theget method of theArrayList.

In this example, we have used an array to keep track of a collection of objects on the canvas. We can
also use an array to keep track of the components of a custom object as we did withArrayLists.

An enhancement to this example that shows some of the benefitsof arrays, we draw the t-shirts in
two rows and use a fixed array of colors for the shirts instead of random colors.

See Example: Drag10ShirtsNicer

A few things to notice here:

• We have an array ofColors initialized to 10 pre-defined color names that we’ll use forour
10 t-shirts.

• The construction of the t-shirts takes place in a nested loopto make it easier to organize them
into 2 rows of 5 shirts each.

Our next enhancement to this example is to draw and drag around 20 shirts, now in 4 rows of 5.

See Example: Drag20Shirts

Most of the program works correctly just by changing the value of the constantNUM ROWS (yay
constants). But...the array of colors is not large enough.

We account for this by reusing the colors once we’ve run out. This is accomplished with some
modulo arithmetic:

shirts[shirtNum].setColor(shirtColors[shirtNum % shirtColors.length]);

9

CS 120 Introduction to Programming Spring 2012

Another Example

See Example: DragStudents

What you’ve been waiting for: being the stars of a program.

This is another “drag objects around” example, but this timethe objects being dragged are your
pictures.

In this example, we place the objects randomly on the canvas,but take some care to make sure they
do not overlap at all. Notice the helper methodoverlapsAny that helps ensure this.

Any image being dragged is also made larger while it’s being dragged.

Other than that, it’s similar to dragging 10 shirts.

Inserting and Removing with Arrays

We have already seen that there is quite a bit to keep track of when using arrays, especially when
objects are being added. We need to manage both the size of thearray and the number of items
it contains. If it fills, we either need to make sure we do not attempt to add another element, or
reconstruct the array with a larger size.

As a wrapup of our initial discussion of arrays, let’s consider two more situations and how we need
to deal with them: adding a new item in the middle of an array, and removing an item from the
end.

For these examples, we will not use graphical objects, just numbers. Arrays can store numbers just
as well as they can store references to objects.

Suppose we have an array ofint large enough to hold 20 numbers.

The array would be declared as an instance variable:

private int[] a;

along with another instance variable indicating the numberof ints currently stored ina:

private int count;

and constructed and initialized:

a = new int[20];
count = 0;

At some point in the program,count contains 10, meaning that elements 0 through 9 ofa contain
meaningful values.

Now, suppose we want to add a new item to the array. So far, we have done something like this:

10

CS 120 Introduction to Programming Spring 2012

a[count] = 17;
count++;

This will put a 17 into element 10, and increment thecount to 11.

But suppose that instead, we want to put the 17 into element 5, and without overwriting any of the
data currently in the array. Perhaps the array is maintaining the numbers in order from smallest to
largest.

In this case, we’d first need to “move up” all of the elements inpositions 5 through 9 to instead be
in positions 6 through 10, add the 17 to position 5, and then incrementcount.

If the variableinsertAt contains the position at which we wish to add a new value, and that new
value is in the variableval:

for (int i=count; i>insertAt; i--) {
a[i] = a[i-1]

}
a[insertAt] = val;
count++;

Now, suppose we would like to remove a value in the middle. Instead of “moving up” values to
make space, we need to “move down” the values to fill in the holethat would be left by removing
the value.

If the variableremoveAt contains the index of the value to be removed:

for (int i=removeAt+1; i<count; i++) {
a[i-1] = a[i];

}
count--;

The loop is only necessary if we wish to maintain relative order among the remaining items in the
array. If that is not important (as is often the case with our graphical objects), we might simply
write:

a[removeAt] = a[count-1];
count--;

In circumstances where we are likely to insert or remove intothe middle of an array during its life-
time, it usually makes sense to take advantage of the higher-level functionality of theArrayList.

Array and ArrayList Summary
The following list summarizes the key differences and similarities between arrays andArrayLists.

11

CS 120 Introduction to Programming Spring 2012

Declaration To declare an array of elements of some typeT:

T[] ar;

whereT can be any type, including primitive types or Object types.

And to declare anArrayList that can hold items of typeT:

ArrayList<T> al;

whereT must be an object type. If we want to store a primitive type, wemust use Java’s
corresponding object wrappers (e.g.,Integer when we want to store items of typeint).

Construction To construct (allocate space for) our array ofn elements of typeT:

ar = new T[n];

Once constructed, the array will always have space forn elements of typeT – if we want a
larger or smaller array, we would have to construct a new one.

The array constructed will have the default value for the datatype stored in each entry. For
object types, all entries begin asnull. For primitive number types, they begin as 0. For
boolean arrays, they begin asfalse.

To construct anArrayList:

al = new ArrayList<T>();

This ArrayList initially does not contain any values. Its size will be determined by the
number of elements we add to it.

Adding an Element To add an element to an array, we have to specify the position at which we
wish to add the new element:

ar[i] = t;

This will place the itemt at positioni into our array.i must be in the range 0 ton-1 if we
constructed our array to haven entries. If there was already some data stored in positioni,
it will be overwritten witht.

If we want to add the item to the “end” of the array, that is, thefirst unoccupied slot in the
array, we will need an additional variable to keep track of the number of currently-occupied
slots. If this is calledaSize, and we have been careful to make sure theaSize elements
in the array occupy slots 0 throughaSize-1, we can add the element with:

ar[aSize] = t;
aSize++;

12

CS 120 Introduction to Programming Spring 2012

With anArrayList, theadd method takes care of this:

al.add(t);

Retrieving an Element To get an item from an array, we use the same notation. To put the value
from positioni in the array into some variablet:

t = ar[i];

Whereas with theArrayList, we need to call a method:

t = al.get(i);

Visiting All Elements To loop over all elements in the array:

for (int i=0; i<aSize; i++) {
t = ar[i];
// do something with t

}

and anArrayList;

for (int i=0; i<al.size(); i++) {
t = al.get(i);
// do something with t

}

13

