
Computer Science 120
Introduction to Programming
Siena College
Spring 2011

Topic Notes: Searching and Sorting

Searching
We all know what searching is – looking for something. In a computer program, the search could
be:

• Looking in a collection of values for some specific value (where is the 17 in this array of
int?).

• Looking for a value with a specific property (which object on the canvas contains the location
where I clicked the mouse?).

• Looking for a record in a database (what is the tax history forthe last four years for the
taxpayer with SSN 101-11-1009?).

• Searching for text in some document or collection of documents (what web pages contain
the text “searching and sorting algorithms?”).

• What known amino acid sequences best match this sequence gathered from proteins in a
given virus?

We have done some searching this semester. Remember the test to see which image was selected
in the “DragStudents” example.

for (int imageNum = 0; imageNum<heads.length; imageNum++) {
if (heads[imageNum].contains(point)) {

selectedHead = heads[imageNum];
dragging = true;
selectedHead.sendToFront();

}
}

We have to search through our collection of objects (VisibleImages) to see which one, if any,
contains the point.

How do we know that we’re done searching? In this case, we keeplooking until we get to the end
of our array. But in many cases (remember thegetIndexOf method in the drawing dots lab), we
need only search until we find the first matching entry.



CS 120 Introduction to Programming Spring 2011

Let’s try to get some idea of how much “work” it takes for us to get an answer. As a rough estimate
of work, we will count how many times we call thecontains method of aVisibleImage.

If we haven VisibleImages, how many calls to theVisibleImage containsmethod will
we have to make before we know the answer? In this case, it’s once per entry in the array, son
times.

In some other cases, like thegetIndexOf method in the drawing dots lab, it depends on how
quickly we find the answer. If none of theVisibleImages contains the point at all, we need to
check alln before we know the answer. If one does contain the point, we can stop as soon as we
find the first one that contains it. It might be the first, it might be the last – we just don’t know.
Assuming that there’s an equal probability that theVisibleImage that contains the point is at
any of then positions, we have to examine, on average,n

2
VisibleImages.

In this case, we can’t do any better. Perhaps if we decided to check in some other order rather than
always examining the first, then the second, and so on.

We are searching in an array, where we have the option to look at any element directly. We will
consider an array ofint, though most of what we discuss applies to a wider range of “searchable”
items.

A method to do this:

/*
* Search for num in array. Return the index of the number, or

* -1 if it is not found.

*/
int getIndexOfNum(int[] array, int num) {

for (int index = 0; index < array.length; index++) {
if (array[index] == num) {

return index;
}

}
return -1;

}

The procedure here is a lot like the searches we have seen. We have no way of knowing that we’re
done until we either find the number we’re looking for, or until we get to the end of the array. So
again, if the array containsn numbers, we have to examine alln in an unsuccessful search, and,
on average,n

2
for a successful search. We could instead search from the endto the front, and we

would have no reason to believe that we’d do any better or worse, on average.

Now, suppose the array has been sorted in ascending order.

Well, we can do the same type of search – start at the beginningand keep looking for the number.
In the case of a successful search, we still stop when we find it. But now, we can also determine
that a search is unsuccessful as soon as we encouter any number larger than our search number.
Assuming that our search number is, on average, is going to befound near the median value of the

2



CS 120 Introduction to Programming Spring 2011

array, our unsuccessful search is now going to require that we examine, on average,n

2
items. This

sounds great, but in fact is not a really significant gain, as we will see. These are all examples of a
linear search – we examine items one at a time in some linear order until we find the search item
or until we can determine that we will not find it.

But there is a better way. To get the intuition for the next way to search for a number, think back
to your favorite number guessing game. I pick a number between 1 and 100 and you have to guess
what it is. The game usually goes something like this:

Me: Guess my number.
You: 50.
Me: Too High.
You: 25.
Me: Too Low.
You 37.
Me: Too High.
You 31.
Me: That’s right.

If you know that there is an order – where do you start your search? In the middle, since then even
if you don’t find it, you can look at the value you found and see if the search item is smaller or
larger. From that, you can decide to look only in the bottom half of the array or in the top half
of the array. You could then do a linear search on the appropriate half – or better yet – repeat the
procedure and cut the half in half, and so on. This is abinary search. It is an example of adivide
and conquer algorithm, because at each step, it divides the problem in half.

A Java method to do this:

/*
* Binary Search for num in array.

*/
int getIndexOfNum(int[] array, int num) {

int mid;
int left = 0;
int right = array.length - 1;
while (left < right) {
mid = (low + high) / 2;
if (array[mid] == num) {

// num is same as middle number
return mid;

} else if (num < array[mid]) {
// num is smaller than middle number
right = mid - 1;

} else {
// num is larger than middle number

3



CS 120 Introduction to Programming Spring 2011

left = mid + 1;
}

}
return -1;

}

How many steps are needed for this?

• Each time, we cut the part of the array we still need to search in half.

• How many times can divide number in half before you get to 1?

• If you start withn, you divide to getn
2

then n

4
, n

8
, ... and eventually get 1.

• Let’s suppose thatn = 2k, then divide to2k−1, 2k−2, 2k−3, ...,20 = 1; dividek times by 2.

• In general, we can dividen by 2 at mostlog
2
n times to get down to 1.

So how much better is this, really? In the case of a small array, the difference is not really signifi-
cant. But as the size grows...

Search# elts 10 100 1000 1,000,000
linear 10 100 1000 1,000,000
binary 8 14 20 40

That’s pretty huge. Even if you think about the search reallyneeding on averagen
2

steps, for the
1000-element case, the binary search is still winning 500 to20. The logarithmic factor is really
important.

We can see this better by looking at graphs ofn vs.log n andn. The difference is large, and gets
larger and larger asn gets larger. Even if we multiply by constant factors in an attempt to make the
log n graph as large as then graph, there will always be a value ofn large enough that the scaled
function forn will be larger than the scaled function forlog n. More on this later.

Sorting
We’ll now look at sorting, since we will need to be able to sortan array to use binary search. As
we will see, sorting takes a fair amount of time, but if we are going to be searching a large array a
lot, the savings obtained by using binary search over linearwill more than make up for the cost of
sorting the array once.

Suppose our goal is to take a shuffled deck of cards and to sort it in ascending order. We’ll ignore
suits, so there is a four-way tie at each rank.

Describing a sorting algorithm precisely can be difficult. Let’s consider a couple.

1. selection sort

4



CS 120 Introduction to Programming Spring 2011

2. insertion sort

Selection Sort

First, we will look at this procedure:

• Search for the smallest card, and move it to the front of the deck.

• Search for the next smallest card, and move it to the second position in the deck.

• ...

What I have described is a form of aselection sort – at each step, we select the item that goes into
the next position of the array, and put it there. This gets us one step closer to a solution.

public void selectionSort(int[] array) {
for (int i = 0; i < array.length - 1; i++) {
int smallestPos = i;
for (int j = i+1; j < array.length - 1; j++) {

if (a[j] < a[smallestPos) {
smallestPos = j;

}
}
int temp = array[smallestPos];
array[smallestPos] = array[i]
array[i] = temp;

}
}

How long does this algorithm take? As we did with searching, we won’t try to calculate an exact
time, but we will estimate the cost by computing the number ofcomparisons done in sorting an
array. We could alternately choose the to count the total number of “visits” to an array element,
but the “shape” of the answer will be the same no matter which of these we compute.

Suppose the original array hasn elements, wheren > 1. Then it takesn − 1 comparisons to find
the smallest element of the array (compare the first with the second, the largest of those with the
third, etc.). In general, the number of comparisons needed to find the smallest element is one less
than the number of elements to be sorted. Once this element has been put into the first slot of the
array, we need to sort the remainingn − 1 elements of the array. By the argument above, it takes
n − 2 comparisons to find the largest of these. We continue with successive stages takingn − 3,
n− 4, all the way down to the last pass through when there are only two elements and it takes only
1 comparison. (Once we get down to 1 element there is nothing to be done.)

5



CS 120 Introduction to Programming Spring 2011

Thus it takesS = (n − 1) + (n − 2) + (n − 3) + ... + 3 + 2 + 1 comparisons to sort a list ofn
elements. We can compute this sum by writing the list forwards and backwards, and then adding
the columns:

S = (n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1
S = 1 + 2 + 3 + ... + (n-3) + (n-2) + (n-1)
-------------------------------------------------------
2S = n + n + n + ... + n + n + n = (n-1)*n

ThereforeS = n
2
−n

2
. The graph of this asn increases looks liken2 – a parabola. Therefore,

selection sort takesn2 time, which is much worse than the behavior for the searchingalgorithms
we saw last time.

Insertion Sort

The selection sort builds up the sorted list by finding the smallest and putting it into the first
position, the sthe second smallest and putting it into the second position, etc., until the entire list is
sorted.

Insertion sort takes a different approach. It builds up a sorted list by noticing that we can build a
sorted list of sizen + 1 by taking a sorted list of sizen and inserting then + 1st element in its
correct position.

We will not look at this algorithm in great detail here. Like selection sort, insertion sort takesn2

time.

6


