Computer Science 120

Introduction to Programming
SIENAcollege siena College

Computer Science Sprlng 2011

Topic Notes: Defining Classes

Numeric Data Types
Before we move on to our next major topic, a few words about heova depresents numbers.

Java includes four commonly used numeric types:

e int,
e | Ong,
o f| oat

e doubl e

(There are others, but we won’t discuss them here.)

The types nt andl ong both represent integers. Typ@t represents numbers between about
—2 % 10° and2 * 10?, while | ong represents integers up to abaot®.

Numbers written with decimal points are represented by ypedf | oat anddoubl e. The

typef | oat only retains about 7 digits of precision, so we usually dee@bl e instead. Type
doubl e has about 15 digits of precision and can represent numbecsaimut1 0°°® and as small
as1073%, These numbers can be written either simply with a decimaitpe.g.,4.735, or in

scientific notationg.g., 5.146E+47, representing.146 * 10%7.

Because of the way many of the Java libraries are written widemt to use typé nt for integers
anddoubl e for numbers with decimal points. Occasionally we will useng when we need to
represent more digits with integers, but we will find no needdef | oat in this course.

Like i nt, the typedoubl e supports operations +, -, *, and /, but does not have an aperat
corresponding to %. The results of applying these operatod®ubl es is an answer which is
also adoubl e. Thus 3.0/2.0=1.5.

If an arithmetic operator has one operand with typg and the other with typeoubl e, the
result will be adoubl e. Basically what happens is that Java recognizes that the per@aads are
of different types (which it is not happy about), and thugmipts to make them be of the same
type. The simplest thing, from Java’s point of view, is towemi nt s todoubl es, as no loss of
precision results. As we saw earlier, if both operands atgp#i nt , the result will also be of
typei nt .

One must be careful in performing divisions to be aware otypes of the operands, as the results
may differ depending on their typesg., 3/2 =1, while 3.0/2.0=3.0/2=3/2.0=1.5.

CS 120 Introduction to Programming Spring 2011

Defining Classes

So far, we have been operating directly on the objectdraptgea primitives such asr anedRect
andFi | | edOval . Your work on the second part of the laundry lab may haveesdad give you
an indication that such an approach can become tedious ggagynams become more complex.
You had to update bothlar amedRect and aFi | | edRect that, together, form the swatch of
laundry during the dragging operations.

Suppose we wanted to augment our basketball game to havecareadistic-looking basketball:
See Example: NiceBasketball

This is a much nicer-looking basketball than what we had inariginal game. We do have one
new objectdraw construct to help us out here: BneanedAr c. This draws only a part of a

FramedOval . It determines which part with two additional parameterstaat angle and an arc

angle, both specified in degrees. The start angle referetarthle from the right edge of the oval,
counterclockwise, where we are to start drawing. The artearders to the number of degrees,
counterclockwise, to draw.

We will not focus much on that aspect of this example, buteskr@anedAr cs are useful building
blocks (along with their cousins the& | | edAr cs), another example demonstrates a bit more
about how to use them:

See Example: Arcs

But back to our nice basketball. Consider how messy our codéMmmeome if we decided to add
a dragging functionality to this basketball. Not just onet just two, but six objects would need
to be moved in the dragging code.

That certainly would become tedious. And we might also wanise this nice basketball in other
programs and in other ways.

Java provides a mechanism that will help us to deficé ass of objects, much like objectdraw
defined our graphics primitives, that we can use in our progrié a very convenient way.

Consider this example, which defines a class cdlieceBBal | in Ni ceBBal | . j ava and then
makes use of it in an updated version of our basketball garad¢amiliarWw ndowCont r ol | er
class calledancyBasket bal | .

See Example: FancyBasketball

What is aNi ceBBal | ? As we can see, it is a basketball. The ability to draw baslstls not a
standard feature of Java or of the objectdraw library. Thaggmam shows how Java allows us to
define new classes of objects appropriate to the needs oatlieytar program we are writing.

You've already been defining classes — iNendowCont r ol | er extension that has been the
framework for each program we've seen is a class definitisamRhis you are familiar with the
basics of the structure that will be required to defid @eBBal | class.

CS 120 Introduction to Programming Spring 2011

public class Nane

{

constant and vari abl e decl arati ons

met hods

Our earlier classes always extend&chdowCont r ol | er, which indicated that they would be
designed to respond to mouse activities in the window. Thlswat be the role of thé\i ceBBal |

class, soitwillnoext end W ndowCont r ol | er and itwill notinclude methods likenMouseC i ck
oronMbuseDr ag. Instead, the body of thdi ceBBal | class will consist of definitions of meth-

ods corresponding to the things we want to be able to tdil @eBBal | to do, likenove and
nmoveTo.

When we define such a class:

1. We declare instance variables describe the parts arel ¢ftain object of that class. Any
individual basketball is composed of ovals, lines and accshe instance variable of the
Ni ceBBal | class refer to these objects.

2. We provide a special method called@nstructor. We've been using constructors for our
library objects - whenever we write a construction. When we“seew Fr amedRect ”,
Java knows what to do to makeFa anedRect appear on the screen because someone
defined a constructor fdfr amedRect . When we write a constructor, we will write a list
of statement to construct the components of the objectetkgihe parts of the basketball)
and associate the with instance variables defined in the lzas.c

3. We define methodsi-e,, lists of statement explaining how to perform the actionswaat
the new objects to know how to do.

Mutator Methods

Let’s first consider one of the methods in theceBBal | class:

public void nove(doubl e dx, double dy) {
body. move(dx, dy);
I
/1l and all of the other parts also are noved

The first keyword in a method declaration is eitpabl i c orpri vat e. (The keywordor ot ect ed
is also allowed, but we will not use it in this course.) Thesgwords determine the “visibility”
of a method. If a method is declared to jpebl i ¢ then it can be called from methods in other
classes. For example, tlmmMouseDr ag method of theFancyBasket bal | class calls the

CS 120 Introduction to Programming Spring 2011

nmove method to theNi ceBBal | object we create. This would not be possible if that first key-
word had beempri vat e.

All of our instance variables aner i vat e, because they should only be used inside of the class
where they are declared. Occasionally we will have constiuatt need to be visible outside of the
class that contains them. In that case we will declare thepubti ¢ static fi nal

The next keyword in the declaration wbve above isvoi d. This (not very intuitively) indicates
that it is a mutator method. That is, it simply performs anactather than returning a value
which can be used in an expression.

Next comes the method’s nammve for example. After this we place formal parameter declara-
tions in parentheses.

Most of the methods we have define so far, have expected ooe gienformation when invoked
(eg., theLocat i on provided to mouse handing methods). Therefore, the heafldiese meth-
ods have all declared a single formal parametecat i on poi nt ”.

The methods associated with an object likéiaeBBal | may expect to be provided other types
of information when invoked. For example, th®ve method will expect a pair of numbers
specifying x and y offsets. The parameters listed in a meéshoglader must correspond to the
information that will be provided when the method is invoked

The parameters of move are of typeubl e. These give the distance that the object should move
in the x and y directions, respectively. Recall that the wayuae thenove method is as follows:

anQoj ect . move(10, 20);

In method headers/signatures, parameters serve as dieciaraf variables. Thus the occurrence
of “doubl e dx” between parentheses serves to declare the varihblas a parameter of type
doubl e. Parameters are used to pass along information to a methuad the body of method
nove can use the variabldx to represent the number provided when the method was invoked
to specify the desired x offset. The correspondence betweifiormal parameter names and
the actual parameter values is determined by their ordere firbt actual listed in a method
invocation is associated with the first formal parametdetisin the header and so on. So in
FancyBasket bal | 's onMouseDr ag method, when the call

bal | . move(poi nt.get X() - |astMuse. get X(),
poi nt.getY() - |astMuse.getY());

is executed, Java transfers control torttoer e method ofNi ceBBal | and initializesdx anddy to
theresultsopoi nt . get X() - | ast Mouse. get X() andpoi nt.getY() - |astMuse. getY(),
respectively.

TheNi ceBBal | class has two other mutator methodeveTo andchangeToRandontCol or .
The method header faroveTo is very similar to that ofmove. The statement list found in
noveTo’s method body is much shorter than thatve’s, however. This is because the definition

CS 120 Introduction to Programming Spring 2011

of noveTo takes advantage of the definition wbve: noveTo computes the offset from the
ball's current location to the desired location and therokas thenove method to move the 6
pieces of the ball.

ThechangeToRandonCol or mutator method is included mainly to emphasize that the meth
ods we define in a class do not need to be only those we have remeriife graphics primitive
we've been using so far. Many of our methods will have famitiames likemove, cont ai ns, or

r emoveFr onCanvas, but that’s only because we are often defining graphicalatdj@nd those
are natural operations on graphical objects.chmmngeToRandontol or, we have provided
functionality for ourNi ceBBal | objects that does not exist for standard graphics prinstilke
FranedRect .

Constructors

Constructors are used to perform the actions which must bertaieén when the object is created.
As a result, they often perform the same kind of actions asbt#® n method in the classes
extendingW ndowCont r ol | er. In particular, they typically provide initial values ofstance
variables and create the graphic objects needed in a class.

The form of the constructor will be very similar to that of rhetls:
public C assNane(parans here ...)

The name of the constructor will always be the same as the mdrttee class being defined.
Thus if we were defining a class namisidceBBal | , the constructor would have the same name.
Constructors are usualfyubl i ¢, and may have as many parameters as are necessary to provide
them with the information necessary to initialize instamagables. However, constructors differ
from methods by omitting theoi d before the constructor’'s name.

As an example, the constructor for cl@8sceBBal | has parameters corresponding to the starting
location of the upper left hand corner of the ball, the siz¢hefball desired and information on
whatcanvas the ball should be drawn. Thus its declaration looks like:

public N ceBBall (double left, double top,
doubl e si ze, Draw ngCanvas aCanvas)

The type of the last parameter of theceBBal | constructor is new to us>r awi ngCanvas

is the type of the variableanvas that we have been using when creating graphic objects. It is
the type of a surface that can be used for drawing graphicctsbjelo this point, we have only
been using the standard one (callethvas) that is defined for us by thé&/ ndowCont rol | er.
SinceNi ceBBal | does noext end W ndowContr ol | er, it would not have any idea what
canvas is unless we tell it, and we tell it that information by pagsihas a parameter to the
constructor.

Accessor Methods

CS 120 Introduction to Programming Spring 2011

The last piece of the definition of tid ceBBal | class is the specification of ie&cessor meth-
ods: cont ai ns, get X, andget Y. Accessor methods allow us to ask questions of an object and
get information back.

Thecont ai ns method’s header looks like:
publ i c bool ean contai ns(Locati on point)

This differs from the mutator methods in that the magic wood d has been replaced by the name
of the typebool ean. This is because the method we are defining here is an aceestiood that
will return a boolean value. That is, the results of sendimig tessage ta.€., calling this method
of) an object will be a value: eithémr ue orf al se. As a result, it is used in a context expecting
abool ean result, such as:

i f (anQbj ect.contains(lastPoint))

In fact, the wordvoi d serves a similar function. It tells us what kind of value thetihod being
declared will produce — in the case of a mutator method: naeval

Variables and Scope

The previous example also demonstrates another way torde@saables. We have seen instance
variables, named constants, and formal parameters. Tl®dsatove andchangeToRandontTol or
each havéocal variables.

These are variables declared right inside a method, antl @xig in that method’s body. The
declarations look a lot like an instance variable declaratexcept that we omit thept i vat e”
qualifier, since local variables are already very “privateahe name is only meaningful within the
method where it is declared.

To summarize the ways we have to declare names for variabtesanstants:

¢ Instance variables are declared outside of any method andsalole inside all methods. The
value of an instance variable is retained from one methdda#te next.

e Named constants are also declared outside of any methodeantsile inside all methods.
The value never changes once set initially.

e Formal parameters are used to communicate information tetaod from its caller. The
names are meaningful only within the method. New values aréged (by the caller in the
corresponding actual parameters) each time the methodlesl.ca

e Local variables are used to store temporary values needhohwhe execution of a method.
They exist only within the method in which they are declared do not retain their values
from one call of the method to the next.

CS 120 Introduction to Programming Spring 2011

Beginning Java programmers are sometimes confused abounttwlise an instance variable and
when to use a local variable. The correct choice dependswridrg the information that will be
stored in the variable needs to exist. If it only needs totexithin a single method execution, it
should be a local variable. If it needs to exist across metiadid, it should be an instance variable.

Multiple Instances of a Custom Class

One of the great advantages of defining a custom class is thataw then instantiate as many
objects of that class as we wish.

For example, we could update our “mouse droppings” progr@miraw lots of nice basketballs
instead of little red circles:

See Example: DrawBBalls

For another example, let’s return to our laundry theme. Mégehstruct a somewhat more belie-
veable laundry item that looks like a T-shirt, create twdanses, and then drag them around the
screen.

See Example: Drag2Shirts

