
Computer Science 120
Introduction to Programming
Siena College
Spring 2011

Topic Notes: Defining Classes

Numeric Data Types
Before we move on to our next major topic, a few words about how Java represents numbers.

Java includes four commonly used numeric types:

• int,

• long,

• float

• double

(There are others, but we won’t discuss them here.)

The typesint andlong both represent integers. Typeint represents numbers between about
−2 ∗ 10

9 and2 ∗ 10
9, whilelong represents integers up to about10

19.

Numbers written with decimal points are represented by the typesfloat anddouble. The
typefloat only retains about 7 digits of precision, so we usually usedouble instead. Type
double has about 15 digits of precision and can represent numbers upto about10

308 and as small
as10

−308. These numbers can be written either simply with a decimal point, e.g.,4.735, or in
scientific notation,e.g., 5.146E+47, representing5.146 ∗ 10

47.

Because of the way many of the Java libraries are written we will tend to use typeint for integers
anddouble for numbers with decimal points. Occasionally we will uselong when we need to
represent more digits with integers, but we will find no need to usefloat in this course.

Like int, the typedouble supports operations +, -, *, and /, but does not have an operation
corresponding to %. The results of applying these operatorsto doubles is an answer which is
also adouble. Thus 3.0 / 2.0 = 1.5.

If an arithmetic operator has one operand with typeint and the other with typedouble, the
result will be adouble. Basically what happens is that Java recognizes that the two operands are
of different types (which it is not happy about), and thus attempts to make them be of the same
type. The simplest thing, from Java’s point of view, is to convertints todoubles, as no loss of
precision results. As we saw earlier, if both operands are oftypeint, the result will also be of
typeint.

One must be careful in performing divisions to be aware of thetypes of the operands, as the results
may differ depending on their types.e.g., 3 / 2 = 1, while 3.0 / 2.0 = 3.0 / 2 = 3 / 2.0 = 1.5.

CS 120 Introduction to Programming Spring 2011

Defining Classes
So far, we have been operating directly on the objectdraw graphics primitives such asFramedRect
andFilledOval. Your work on the second part of the laundry lab may have started to give you
an indication that such an approach can become tedious as ourprograms become more complex.
You had to update both aFramedRect and aFilledRect that, together, form the swatch of
laundry during the dragging operations.

Suppose we wanted to augment our basketball game to have a more realistic-looking basketball:

See Example: NiceBasketball

This is a much nicer-looking basketball than what we had in our original game. We do have one
new objectdraw construct to help us out here: theFramedArc. This draws only a part of a
FramedOval. It determines which part with two additional parameters, astart angle and an arc
angle, both specified in degrees. The start angle refers to the angle from the right edge of the oval,
counterclockwise, where we are to start drawing. The arc angle refers to the number of degrees,
counterclockwise, to draw.

We will not focus much on that aspect of this example, but sinceFramedArcs are useful building
blocks (along with their cousins theFilledArcs), another example demonstrates a bit more
about how to use them:

See Example: Arcs

But back to our nice basketball. Consider how messy our code would become if we decided to add
a dragging functionality to this basketball. Not just one, not just two, but six objects would need
to be moved in the dragging code.

That certainly would become tedious. And we might also want to use this nice basketball in other
programs and in other ways.

Java provides a mechanism that will help us to define aclass of objects, much like objectdraw
defined our graphics primitives, that we can use in our programs in a very convenient way.

Consider this example, which defines a class calledNiceBBall in NiceBBall.java and then
makes use of it in an updated version of our basketball game ina familiarWindowController
class calledFancyBasketball.

See Example: FancyBasketball

What is aNiceBBall? As we can see, it is a basketball. The ability to draw basketballs is not a
standard feature of Java or of the objectdraw library. This program shows how Java allows us to
define new classes of objects appropriate to the needs of the particular program we are writing.

You’ve already been defining classes – theWindowController extension that has been the
framework for each program we’ve seen is a class definition. From this you are familiar with the
basics of the structure that will be required to define aNiceBBall class.

2

CS 120 Introduction to Programming Spring 2011

public class Name
{

constant and variable declarations

methods
}

Our earlier classes always extendedWindowController, which indicated that they would be
designed to respond to mouse activities in the window. This will not be the role of theNiceBBall
class, so it will notextend WindowController and it will not include methods likeonMouseClick
oronMouseDrag. Instead, the body of theNiceBBall class will consist of definitions of meth-
ods corresponding to the things we want to be able to tell aNiceBBall to do, likemove and
moveTo.

When we define such a class:

1. We declare instance variables describe the parts and state of an object of that class. Any
individual basketball is composed of ovals, lines and arcs so the instance variable of the
NiceBBall class refer to these objects.

2. We provide a special method called aconstructor. We’ve been using constructors for our
library objects - whenever we write a construction. When we say “new FramedRect”,
Java knows what to do to make aFramedRect appear on the screen because someone
defined a constructor forFramedRect. When we write a constructor, we will write a list
of statement to construct the components of the object desired (the parts of the basketball)
and associate the with instance variables defined in the new class.

3. We define methods -i.e., lists of statement explaining how to perform the actions wewant
the new objects to know how to do.

Mutator Methods

Let’s first consider one of the methods in theNiceBBall class:

public void move(double dx, double dy) {
body.move(dx, dy);
// ...
// and all of the other parts also are moved

}

The first keyword in a method declaration is eitherpublic orprivate. (The keywordprotected
is also allowed, but we will not use it in this course.) These keywords determine the “visibility”
of a method. If a method is declared to bepublic then it can be called from methods in other
classes. For example, theonMouseDrag method of theFancyBasketball class calls the

3

CS 120 Introduction to Programming Spring 2011

move method to theNiceBBall object we create. This would not be possible if that first key-
word had beenprivate.

All of our instance variables areprivate, because they should only be used inside of the class
where they are declared. Occasionally we will have constants that need to be visible outside of the
class that contains them. In that case we will declare them aspublic static final ...

The next keyword in the declaration ofmove above isvoid. This (not very intuitively) indicates
that it is a mutator method. That is, it simply performs an action rather than returning a value
which can be used in an expression.

Next comes the method’s name,move for example. After this we place formal parameter declara-
tions in parentheses.

Most of the methods we have define so far, have expected one piece of information when invoked
(e.g., theLocation provided to mouse handing methods). Therefore, the headersof these meth-
ods have all declared a single formal parameter “Location point”.

The methods associated with an object like aNiceBBall may expect to be provided other types
of information when invoked. For example, themove method will expect a pair of numbers
specifying x and y offsets. The parameters listed in a method’s header must correspond to the
information that will be provided when the method is invoked.

The parameters of move are of typedouble. These give the distance that the object should move
in the x and y directions, respectively. Recall that the way weuse themove method is as follows:

anObject.move(10, 20);

In method headers/signatures, parameters serve as declarations of variables. Thus the occurrence
of “double dx” between parentheses serves to declare the variabledx as a parameter of type
double. Parameters are used to pass along information to a method. Thus the body of method
move can use the variabledx to represent the number provided when the method was invoked
to specify the desired x offset. The correspondence betweenthe formal parameter names and
the actual parameter values is determined by their order. The first actual listed in a method
invocation is associated with the first formal parameter listed in the header and so on. So in
FancyBasketball’s onMouseDrag method, when the call

ball.move(point.getX() - lastMouse.getX(),
point.getY() - lastMouse.getY());

is executed, Java transfers control to themovemethod ofNiceBBall and initializesdx anddy to
the results ofpoint.getX() - lastMouse.getX() andpoint.getY() - lastMouse.getY(),
respectively.

TheNiceBBall class has two other mutator methods:moveTo andchangeToRandomColor.
The method header formoveTo is very similar to that ofmove. The statement list found in
moveTo’s method body is much shorter than thatmove’s, however. This is because the definition

4

CS 120 Introduction to Programming Spring 2011

of moveTo takes advantage of the definition ofmove: moveTo computes the offset from the
ball’s current location to the desired location and then invokes themove method to move the 6
pieces of the ball.

ThechangeToRandomColor mutator method is included mainly to emphasize that the meth-
ods we define in a class do not need to be only those we have seen from the graphics primitive
we’ve been using so far. Many of our methods will have familiar names likemove, contains, or
removeFromCanvas, but that’s only because we are often defining graphical objects and those
are natural operations on graphical objects. InchangeToRandomColor, we have provided
functionality for ourNiceBBall objects that does not exist for standard graphics primitives like
FramedRect.

Constructors

Constructors are used to perform the actions which must be undertaken when the object is created.
As a result, they often perform the same kind of actions as thebegin method in the classes
extendingWindowController. In particular, they typically provide initial values of instance
variables and create the graphic objects needed in a class.

The form of the constructor will be very similar to that of methods:

public ClassName(params here ...)

The name of the constructor will always be the same as the nameof the class being defined.
Thus if we were defining a class namedNiceBBall, the constructor would have the same name.
Constructors are usuallypublic, and may have as many parameters as are necessary to provide
them with the information necessary to initialize instancevariables. However, constructors differ
from methods by omitting thevoid before the constructor’s name.

As an example, the constructor for classNiceBBall has parameters corresponding to the starting
location of the upper left hand corner of the ball, the size ofthe ball desired and information on
whatcanvas the ball should be drawn. Thus its declaration looks like:

public NiceBBall(double left, double top,
double size, DrawingCanvas aCanvas)

The type of the last parameter of theNiceBBall constructor is new to us.DrawingCanvas
is the type of the variablecanvas that we have been using when creating graphic objects. It is
the type of a surface that can be used for drawing graphic objects. To this point, we have only
been using the standard one (calledcanvas) that is defined for us by theWindowController.
SinceNiceBBall does notextend WindowController, it would not have any idea what
canvas is unless we tell it, and we tell it that information by passing it as a parameter to the
constructor.

Accessor Methods

5

CS 120 Introduction to Programming Spring 2011

The last piece of the definition of theNiceBBall class is the specification of itsaccessor meth-
ods: contains, getX, andgetY. Accessor methods allow us to ask questions of an object and
get information back.

Thecontains method’s header looks like:

public boolean contains(Location point)

This differs from the mutator methods in that the magic wordvoid has been replaced by the name
of the typeboolean. This is because the method we are defining here is an accessormethod that
will return a boolean value. That is, the results of sending this message to (i.e., calling this method
of) an object will be a value: eithertrue or false. As a result, it is used in a context expecting
aboolean result, such as:

if (anObject.contains(lastPoint)) ...

In fact, the wordvoid serves a similar function. It tells us what kind of value the method being
declared will produce – in the case of a mutator method: no value.

Variables and Scope
The previous example also demonstrates another way to declare variables. We have seen instance
variables, named constants, and formal parameters. The methodsmove andchangeToRandomColor
each havelocal variables.

These are variables declared right inside a method, and exist only in that method’s body. The
declarations look a lot like an instance variable declaration, except that we omit the “private”
qualifier, since local variables are already very “private”– the name is only meaningful within the
method where it is declared.

To summarize the ways we have to declare names for variables and constants:

• Instance variables are declared outside of any method and are visible inside all methods. The
value of an instance variable is retained from one method call to the next.

• Named constants are also declared outside of any method and are visible inside all methods.
The value never changes once set initially.

• Formal parameters are used to communicate information to a method from its caller. The
names are meaningful only within the method. New values are provided (by the caller in the
corresponding actual parameters) each time the method is called.

• Local variables are used to store temporary values needed within the execution of a method.
They exist only within the method in which they are declared and do not retain their values
from one call of the method to the next.

6

CS 120 Introduction to Programming Spring 2011

Beginning Java programmers are sometimes confused about when to use an instance variable and
when to use a local variable. The correct choice depends on how long the information that will be
stored in the variable needs to exist. If it only needs to exist within a single method execution, it
should be a local variable. If it needs to exist across methodcalls, it should be an instance variable.

Multiple Instances of a Custom Class
One of the great advantages of defining a custom class is that we can then instantiate as many
objects of that class as we wish.

For example, we could update our “mouse droppings” program to draw lots of nice basketballs
instead of little red circles:

See Example: DrawBBalls

For another example, let’s return to our laundry theme. We’ll construct a somewhat more belie-
veable laundry item that looks like a T-shirt, create two instances, and then drag them around the
screen.

See Example: Drag2Shirts

7

