Computer Science 120

Introduction to Programming
SIENAcollege siena College
Computer Science Sprlng 2011

Topic Notes: Arrays

Our next major topic involves naming collections of items.t Brst, we will look at a loop con-
struct that we will make use of in that context.

f or Loops

We have useahi | e loops in a number of contexts, one of which is for countingr &le,
in the falling snow example, we had the followingn method:

i nt snowCount = O;

/'l continue creating snow until the maxi mum anount
/'l has been created
whil e (snowCount < MAX SNOW) {

snowCount = snowCount + 1;

new Fal | i ngSnow canvas, snowPi c,

snowGen. next Val ue(), /1 x coordinate

snowCen. next Val ue() =2/ canvas. get Wdth()+2); // y spt
pause(FLAKE | NTERVAL) ;

If we carefully examine the loop in the falling show exampl®oee, we can see that it has the
following structure:

int counter = O;
while (counter < stopVal)
{
/1l do stuff
count er ++;

It turns out that we can use a different construct that laealithe code dealing with counting so
that it is easier to understand. This construct is callédia loop. You would use it for counting
by saying the following:

CS 120 Introduction to Programming Spring 2011

for (int counter = 0; counter < stopVal; counter++)

{
}

// do stuff - but omt counter++ at end

The code in the parentheses consists of 3 parts; it is notajustndition as in f or whi |l e
statements. The parts are separated by semicolons. Theditss executed once when we first
reach the or loop. Itis used to declare and initialize the counter. Theoad part is a condition,
just as inwhi | e statements. It is evaluated before we enter the loop anaddetxh subsequent
iteration of the loop. It defines the stopping condition foe toop, comparing the counter to the
upper limit. The third part performs an update. It is exedwetheend of each iteration of the
f or loop, just before testing the condition again. It is usedddate the counter.

How would we rewrite the falling snow example to usea loop?
See Example: FallingSnowFor

Essentially we have taken three lines from the abwviel e loop version and combined them into
one line of thef or loop version. Because we included the declaration of theteoumside the
loop (see i nt snowCount ”), it is only available inside the loop. If you try to use ittside of
the loop, Java will claim to have never heard of a variabléwhat name.

Notice how the for localizes the use of the counter. This haslienefits. First, it simplifies the
body of the loop so that it is somewhat easier to understantddldy. More importantly, it becomes
evident, in one line of code, that this is a counting loop.

Other variations

Many variations are possible and we will see them frequethtigughout the remainder of the
course. For example, we coutdunt down instead of up:

for (int countdown = 10; countdown >= 1; countdown--)

{

}
Systemout.println ("Blast off!l");

System out. printl n(count down) ;

Summary of f or loops

The general structure offeor statement is the following:

for (<initialization>, <condition> <update>)

{

<code to repeat>

}

CS 120 Introduction to Programming Spring 2011

e The initialization part is executed only once, when we fiestah thd or loop.
e The condition is executed before each iteration, includegfirst one.

e The update part is executed after each iteration, befotiagethe condition.

When should you usefaor loop instead of a while loop:

e Definitely use for loops when counting!
e Initialization, condition, update all are expressed imtgof the same variable
e The variable is not modified elsewhere in the loop.

e Itis correct to do the update command as the last stateméme inody of the loop.

Arrays

Sometimes we have a lot of very similar data, and we wouldldo similar things to each datum.
For example, suppose we wanted to extend our “Drag2Shixeshele to have 4 shirts instead of
just 2.

See Example: Drag2Shirts

We could go through the program and everywhere werssShi rt andbl ueShirt, add 2
more variables and 2 more segments of code to deal with thershvts.

See Example: Drag4Shirts

That was not terribly painful, but a bit tedious and error@oNow, what if we wanted to create
10, 20, or 100 shirts to be dragged around the canvas. We't aviaetter way to name the shirts
as a group.

In mathematics this is done by attaching subscripts to naesan talk about numbers, no,...
We want to be able to do the same thing with computer languddesname for this type of group
of elements is aarray.

Suppose we wish to have a group of elements all of which hanesTigi ngAMAJi g and we wish
to call the groug hi ngs. Then we write the declaration ohi ngs as

Thi ngAMRJi g[] things;

The only difference between this and the declaration of glsitem of typeThi ngAMaJi g is
the occurrence of[*] ” after the type.

Like all other objects, a group of elements needs to be ateate

CS 120 Introduction to Programming Spring 2011

t hi ngs = new Thi ngAVRJi g[25] ;

Again, notice the square brackets. The number in parergl{@Sg¢indicates the maximum number
of elements that there are slots for. We can now refer to iddal elements using subscripts.
However, in programming languages we cannot easily setubscsipts in a smaller font placed
slightly lower than regular type. As a result we use the uiboys ‘[] ” to indicate a subscript.
If, as above, we definehi ngs to have 25 elements, they may be referred to as:

things[0], things[1], ..., things[24]

We start numbering the subscriptsCatand hence the last subscript is one smaller than the total
number of elements. Thus in the example above the subsgogdtem 0 to 24.

One warning: When we initialize an array as above, we onlytersiats for all of the elements,
we do not necessarily fill the slots with elements. Actudhy default values of the elements of
the array are the same as for instance variables of the saqrae lfyThi ngAMaJi g is an object
type, then the initial values of all elementsiisl | , while if it is i nt , then the initial values will
all be 0. Thus you will want to be careful to put the appropriate valirethe array before using
them (especially before sending message to them! — thBkid &Poi nt er Except i on waiting

to happen).

Armed with this new construct, let's augment the shirt draggrogram to be able to drag around
more shirts.

See Example: Drag10Shirts

In this code, we we have a single array nanséd rt s. This array is declared as an instance
variable, constructed at the start of thegi n method, and given values (references to actual
TShi rt s) just after.

Then in theonMbusePr ess method, we loop through all of the array entries to determihieh,
if any, has been pressed. FinallydnMouseExi t , we tell all of the shirts to move back to their
starting positions.

In this example, we have used an array to keep track of a tiolfeof objects on the canvas. We
can also use an array to keep track of the components of axcudict.

In our final enhancement to this example, we draw the t-simitiso rows and use a fixed array of
colors for the shirts instead of random colors.

See Example: Drag10ShirtsNicer

A few things to notice here:

e We have an array d@ol or s initialized to 10 pre-defined color names that we’ll usedor
10 t-shirts.

e The construction of the t-shirts takes place in a nestedtoaopake it easier to organize them
into 2 rows of 5 shirts each.

CS 120 Introduction to Programming Spring 2011

Our next enhancement to this example is to draw and drag dr2@ishirts, now in 4 rows of 5.
See Example: Drag20Shirts

Most of the program works correctly just by changing the gadfithe constanlUM ROWS (yay
constants). But...the array of colors is not large enough.

We account for this by reusing the colors once we've run outis Ts accomplished with some
modulo arithmetic:

shirts[shirtNunj.set Col or(shirtColors[shirtNum % shirtColors.|length]);

Arraysin Custom Objects

Arrays can be used to store any of the data types we have epedjcind can be used in anywhere
we use regular variables.

First, we look at a program that doesn’t use arrays:
See Example: DrawRoads

This program draws little segments of roads when we clickitioeise. Nothing is new here — we
could have written this a while ago.

But now suppose we want to be able to drag one of these around.

We need to have names for all of the components of the roadesggn we can do things like
move it and check for containment of a point.

See Example: DragRoads
The enhancements to thé ndowCont r ol | er class are all very familiar.

It's in the RoadSegnent class that we make use of an array to hold the center stripas obad
segment. Notice the same steps: declare a variable withrayntgpe, construct it witmew, then
fill in the entries with the appropriate types of objects.

In the constructor, we do the construction of the array (v&t iompute the number of stripes we’ll
draw, so we know how how big to make the array), then creatachel stripes.

In thenove method, we loop through the stripes, moving each one.

Notice there that we need to know how many elements are inroay,dut the variable we used
back in the constructon(ntt r i pes) has gone out of scope and is no longer available. Fortu-
nately, arrays in Java come with this information as stathdguipment. After any array has been
constructed, its length can be determined by using thengt h field.

A few words of caution here:
¢ We have taken care to make our array exactly large enoughldotie number of objects
we placed in it. If we attempted to put an object irtent er St ri pes[5] after con-
structing it to have 5 slots (which, remember, are numbergadugh 4), we would get an

5

CS 120 Introduction to Programming Spring 2011

Arrayl ndexQut O BoundsExcept i on. Basically, your program would crash in the
same way you've all seen witkul | Poi nt er Except i ons.

e It is perfectly legal to have an array of a given size but to osly some of the slots to
store objects. However, we need to be careful not to attempisé the values in those
slots — they’ll benul | . The. | engt h value is the number of slots in the array when we
constructed it, not the number of its slots that containadata.

This is nice, but perhaps we want to combine this functidyalith that of the program where we
could drag around any of 10 shirts. Let’s use an array to kessgk tof all of the road segments
we've created, so we can dragy segment, not just the most recently drawn one.

See Example: DragAllRoads

Here, in addition to having an array to keep track of the camepts of one of the road segments,
we keep an array dRoadSegmnent objects in theN ndowCont r ol | er class.

The arraysegmnent s is declared as an instance variable and is constructed lrethen method,
large enough to hold RoadSegnent object references. Since the number of objects we’ll store
is not predetermined, we have a decision to make.

Some factors to consider:

e Once we construct an arraye, new), its size cannot be changed. If we wish to change the
size of the array, we need to construct a new array, copy thieots of the old array to the
new, then throw away the old array.

e If we make the array too large to start and we never use mosieo$lbts, we have wasted
that space.

¢ If we make the array too small, we will quickly need to constrainew, larger one and copy
over the contents.

The solution used here is to start with a fairly small array it then double it in size each time
it fills up.

Another Example
See Example: DragStudents
What you've been waiting for: being the stars of a program.

This is another “drag objects around” example, but this tihreeobjects being dragged are your
pictures.

In this example, we place the objects randomly on the calwaisake some care to make sure they
do not overlap at all. Notice the helper methmder | apsAny that helps ensure this.

Any image being dragged is also made larger while it's beragded.

6

CS 120 Introduction to Programming Spring 2011

Other than that, it's similar to dragging 10 shirts.

Inserting and Removing with Arrays

We have already seen that there is quite a bit to keep trackhehwsing arrays, especially when
objects are being added. We need to manage both the size afrhyeand the number of items
it contains. If it fills, we either need to make sure we do nt¢rapt to add another element, or
reconstruct the array with a larger size.

As a wrapup of our initial discussion of arrays, let's coesitivo more situations and how we need
to deal with them: adding a new item in the middle of an arrag Bemoving an item from the
end.

For these examples, we will not use graphical objects, justbers. Arrays can store numbers just
as well as they can store references to objects.

Suppose we have an arrayiait large enough to hold 20 numbers.

The array would be declared as an instance variable:
private int[] a;
along with another instance variable indicating the nunadf@émt s currently stored im.:
private int count;
and constructed and initialized:

a = new int[20];
count = O;

At some point in the prograncount contains 10, meaning that elements 0 through® obntain
meaningful values.

Now, suppose we want to add a new item to the array. So far, weed@ne something like this:
a[count] = 17;
count ++;

This will put a 17 into element 10, and increment tteunt to 11.

But suppose that instead, we want to put the 17 into elememicbyéhout overwriting any of the
data currently in the array. Perhaps the array is maintgitiea numbers in order from smallest to
largest.

In this case, we'd first need to “move up” all of the elementpasitions 5 through 9 to instead be
in positions 6 through 10, add the 17 to position 5, and therementcount .

7

CS 120 Introduction to Programming Spring 2011

If the variablei nser t At contains the position at which we wish to add a new value, batthtew
value is in the variableal :

for (int i=count; i>insertAt; i--) {
a[i] = a[i-1]

}

a[insertAt] = val;

count ++;

Now, suppose we would like to remove a value in the middletelns of “moving up” values to
make space, we need to “move down” the values to fill in the ti@ewould be left by removing
the value.

If the variabler enoveAt contains the index of the value to be removed:

for (int i=renoveAt+1; i<count; i++) {
a[i-1] = a[i];
}

count - -;

The loop is only necessary if we wish to maintain relativeeor@mong the remaining items in the
array. If that is not important (as is often the case with aapgical objects), we might simply
write:

a[renmoveAt] = a[count-1];
count - -;

