
Computer Science 112
Art & Science of Computer Graphics
The College of Saint Rose

Spring 2016

Topic Notes: Animation

At long last, we are just about ready to create our first animations.

Our first animation is very simplistic, but we will begin there to see the overall structure of an

Ambrosia animation.

On the Wiki: BallRoll

When we run it, if all is set up correctly, a movie file is generated that shows a ball rolling across

the image. Ambrosia constructs an animation by generating a series of images, called frames.

The movie file is a series of these frames, displayed on the screen in succession quickly enough

that they appear to the human eye and brain as moving smoothly. This is exactly how movies,

television, and computer screens work. As long as each frame is replaced by the next about 24

times per second, it will look to us like smooth motion rather than a series of still images.

There are several items here that are new to us.

• We define a function, in this case, rollBall, called our adjustment function, that modifies

the scene in some way between successive frames of the movie. We will see in a bit how this

function gets called repeatedly to generate a series of frames.

• All of these frames need to go somewhere, and we can define a folder (within the folder

where we’re working) to contain these images:

environment.projectFolder(’movieImages’)

In this case, you would need to have a folder movieImages inside the folder where your

model file exists.

• You probably noticed along the way that the image files Ambrosia generates have names

that include your username and some seemingly random number before the .png extension.

With animations, we usually want to give these frame files another name. This is done with

the statement:

image.fileName(’rollingball’)

• We have developed models that generated multiple images before. You likely recall that

this results in each image opening up in a new “Preview” window for each image. When

generating an animation, we don’t normally want to see each frame as it’s generated. We

can prevent that from happening with this statement:



CSC 112 The Art & Science of Computer Graphics Spring 2016

image.viewResult(False)

• A movie is generated from a series of numbered frames, and later we might see a situation

where we want to manipulate the frame numbers to generate a sequence of “camera shots”

that would later be pasted together into a single movie. For now, we want them all in the

same movie, and that means starting our frame numbering at 0:

image.frameNumber(0)

• Rather than a single “camera.shoot()”, which would generate only a single frame, we

use the film message to our camera object that generates an entire sequence of frames:

camera.film(60, rollBall)

In this case, we generate 61 frames (the “60” refers to the number of times we adjust the

scene between frames, so we always end up with one more frame than the number we give),

and the function rollBall is called between each pair of frames.

If we look at the rollBall adjustment function, we see that it simply tells the sphere we’ve

named ball to move to the right by 10 units.

Adjustment functions don’t get any simpler than this. We will see much more complex

adjustment functions that modify multiple objects in our scene by changing their positions,

orientations, scale, material properties. We can even change the lighting or camera properties

in our adjustment functions.

• Once we have used one or more film messages to generate frames of our movie, we need

to tell the camera that it should paste them together into a single movie:

camera.buildMovie()

blend and morph

Before we begin work on more interesting animations, we will take a look at a couple of functions

provided by Ambrosia that we will use in conjunction first with Bézier curves and then to help

guide our animations.

First, blend.

In its simplest form, blend does linear interpolation. If we provide three parameters:

blend(t, from, to)

2



CSC 112 The Art & Science of Computer Graphics Spring 2016

t is expected to be a value from 0-1. If t is 0, the function returns from. If t is 1, the function

returns to. If t is some number in between, the function returns a value that is a “blend” of from

and to, using t of from and 1-t of to.

The parameters from and to may be numbers, tuples, or lists of numbers (or lists of lists of

numbers, etc.) so long as they are the same “shape” and corresponding elements in the lists or

tuples can be “blended”.

Examples:

>>> red

(1, 0, 0)

>>> blend(.23, 0, 100)

23.0

>>> blend(.75, (0,0), (1,1))

(0.75, 0.75)

>>> blend(.5, red, blue)

(0.5, 0.0, 0.5)

>>> blend(.3, (0, 1, 1), (240, 1, 1)) # think: HSV

(72.0, 1.0, 1.0)

The morph function does a series of blends. In its simplest form, it takes three parameters as well:

morph(n, from, to)

In this case, morph returns a list of n+1 blended values that go from from to to.

The first entry of the list is the result of blend(0, from, to) (or simply, from), the next is

blend(1/n, from, to), the next is blend(2/n, from, to), on up to the last, which

is blend(1, from, to), which is simply to.

Examples:

>>> morph(4, 0, 100)

[0.0, 25.0, 50.0, 75.0, 100.0]

>>> morph(10, (0,0), (2,2))

[(0.0, 0.0), (0.2, 0.2), (0.4, 0.4), (0.6, 0.6),

(0.8, 0.8), (1.0, 1.0), (1.2, 1.2), (1.4, 1.4),

(1.6, 1.6), (1.8, 1.8), (2.0, 2.0)]

>>> morph(5, red, blue)

[(1.0, 0.0, 0.0), (0.8, 0.0, 0.2), (0.6, 0.0, 0.4),

(0.4, 0.0, 0.6), (0.19999999999999996, 0.0, 0.8), (0.0, 0.0, 1.0)]

Remember that passing a value of n results in n+1 elements in our resulting list.

3



CSC 112 The Art & Science of Computer Graphics Spring 2016

We will make extensive use of these, but to start, let’s consider the potential for a “time-lapse”

image.

On the Wiki: MorphReplication

So far, this is just a different way to do something we could have easily done with a range of

values in our for loop.

We can complicate matters a bit and do some things that would be trickier with a loop over a simple

range.

The bulk of the work in this example is done in two places:

1. Building our list of positions for our objects with the morph function. In this case:

morph(19, (-200, 0, 0), (200, 0, 0))

This gives us 20 positions, the first at (-200, 0, 0), the last at (200, 0, 0), evenly

spaced along the x-axis.

2. The for loop retrieves the translation amounts in x, y, z from each tuple in our list, and then

adds a sphere and translates it by that amount.

Our next example uses morph on positions, scaling factors, and colors, then uses values from all

of those lists to add some spheres.

On the Wiki: MoreMorphReplication

Here, we create three lists from the morph function. Then a series of 20 spheres, each of which

gets its properties from a given position in each of the three lists generated by morph.

We do have one new Python construct: the statements that access the value at a given position in

our lists:

s = scalingFactors[i]

The blend and morph functions can also compute cubic Bézier curve positions. If we provide

5 arguments instead of 3, the values will be interpreted as control points (our “A”, “B”, “C”, and

“D” points from the scaffolding construction) of a cubic Bézier curve.

On the Wiki: BezierMorphReplication

Finally, these functions can take a set of 3 points, which will produce a quadratic Bézier curve – a

parabolic shape.

On the Wiki: QuadraticMorphReplication

Applying morph to Animation

4



CSC 112 The Art & Science of Computer Graphics Spring 2016

Now that we’ve seen morph and the basics of animation, let’s bring the two together.

On the Wiki: BallToss

There are a few things here that we have not yet seen.

• Our adjustment function moveBall again applies to a ball we’ve added to the scene. In

this case, however, we have passed an extra parameter to camera.film that specifies a list

of 4 points that determine the values that will be passed to the moveBall function. Since

the list contains 4 points, the points will be those along the cubic Bézier curve defined by

those points. Those values (the same as those that would be returned by morph with 50

transitions) are passed as the parameter pos to each call to the adjustment function.

• Unlike our first animation example, where we always moved the ball by a small amount

from its previous position, in this case, we are given the new location where the ball should

be at each frame. The usual transformations we apply are cumulative (by composition) and

thereby relative to previously-applied transformations. Ambrosia provides a function that

we use here, absoluteXform, that causes an absolute transformation, where all previous

transformations are forgotten, and only the ones given are to be applied. Therefore, the

previous position of the ball is forgotten, so we can then move it to the absolution position

as given by pos.

• When retrieving the x, y, and z positions from the pos parameter, we again use the []

notation to get the values from our tuple by position.

Bringing together multiple films

Our next example shows how to put together multiple “phases” or “segments” of animation into a

single movie. Here, we don’t just toss the ball from one place to another, but have it then be tossed

to a third location, and finally back to the first.

On the Wiki: BallTossAround

Note here the multiple film statements, each of which generates 51 frames of the movie. The

single buildMovie combines the frames from all three segments into a single movie file.

The program has also been improved with a few names defining the parameters of the scene and

animation: the three positions and the height of the control point between them. It also uses a

quadratic Bézier path (3 control points instead of 4 for cubic) to obtain a truly parabolic path.

Animating multiple things simultaneously

Our adjustment functions and film messages can take many parameters that can be used to adjust

pretty much anything we wish in our scene from frame to frame of the animation. We have a pretty

extreme example of this:

On the Wiki: CrazyBallToss

5



CSC 112 The Art & Science of Computer Graphics Spring 2016

First, notice that after the name of the adjustment function in the camera.film, we have 7 lists.

Each of these is going to result in the values of a “morph 50” using that list as a linear, quadratic,

or cubic Bézier path.

Next, notice that the adjustment function also expects 7 parameters. The first parameter will get

the values from the morph of the first list in camera.film, the second parameter will get the

values from the morph of the second list, etc..

Specifically, the first call to the adjustment function moveThings will receive the parameters

from the morph at t = 0:

moveThings((-200,50,0), 1, (-100,25,-100), (0,1,1), 0, .5, 0)

The next would be the morph at t = .02

moveThings((-192,59.8,0), 0.99, (-96,25,-96), (7.2,1,1), 21.6, .585, 7.84)

The third would be the morph at t = .04

moveThings((-184,69.2,0), 0.98, (-92,25,-92), (14.4,1,1), 43.2, .661, 15.36)

and so on until the 51st call would result in the morph at t = 1:

moveThings((200,50,0), 0, (100,25,100), (360,1,1), 1080, .5, 0)

Those values are assigned to the formal parameters of moveThings for us to use inside the

adjustment function to move or otherwise modify all of the items.

See the comments, especially in the adjustment function moveThings to see how these are ap-

plied to change the positions, orientations, materials properties, sizes, and intensities of objects in

our scene.

Moving the Camera

While the above example makes many changes on each adjustment between frames, the camera

remains in a fixed position. But that’s also movable.

On the Wiki: CameraViewAround

In this case, we put lots of objects in the scene, but never move them. Instead, we move the camera

to positions that trace out a circle 300 units above the xz-plane, centered around the y-axis. Don’t

be too scared by the sine and cosine in there, it’s just a convenient way to compute coordinates of

the points along that circle.

6



CSC 112 The Art & Science of Computer Graphics Spring 2016

We could also use interpolation directly to compute camera positions. Here’s the same scene, but

with a “fly-through” instead.

On the Wiki: CameraViewFly

For Star Wars fans, here’s a scene inspired by the attack on the Death Star.

On the Wiki: CanyonFly

Advanced Animation

The following examples show a “sliding” ball vs. a rolling ball:

On the Wiki: UglyBallRoll

On the Wiki: NiceBallRoll

7


