Computer Science 110

M[]C The Art & Science of Computer Graphics
— Mount Holyoke College

MOUNT HOLYOKE COLLEGE Sprlng 2010

Topic Notes: Basic Modeling

DrScheme and Mead Basics

We will be working in a development environment called Dr&tie, using the Mead Modeling
System.

DrScheme is a general purpose development environmertdd@@¢heme programming language.
We will see in lab how you can run DrScheme and use Mead ydursel

Some DrScheme/Mead basics:

e The DrScheme window has two main areas where we can type.

1. The top window is where we develop our model descriptions.
2. The bottom window is used to issue interactive comman@s&zheme.

3. The same commands work in both places, but the commankis topg window are ex-
ecuted only when we click the “Run” button, while the ones m lbiottom are executed
immediately.

e Like any computer programming environment, DrScheme anddvequire that we follow
a set of rules (theyntax) when forming commands. This will become more clear through
examples.

e To be able to use Mead, we need to issue a command to tell Drigctieit we want to use
it;
(require (lib "Defs.ss" "Mead"))

Nearly all of our model files will begin with this incantation

If Mead is working properly, it will print a message “Cheersénd tell you the version
number of Mead that you are using.

This is also our first look at the syntax required — we’ll beitgplots of parentheses!

e Here are some very simple commands to try out in the interaatindow:

1.3
2.3.4

CS 110 The Art & Science of Computer Graphics Spring 2010

3.1/2

4. 6/8

5. pi

6. gol den

e Those don’t compute anything, but thdaaction calls do:

(+ 1 2)

(+ 123

(/ 8 13)

(/ 8.0 13.0)

(- 3)

(+ 1)

(= 0.232321 0.223112)
(sqgrt 5)

(/ (+123) 3
(/2 (+ 1 (sqgrt 5)))
.(sin pi)

. (random)

.(* 100 (random)
."Hey there!"

© 0N Ok ODRE

o
A W N PRFR O

Modeling Basics
So Mead can clearly do some math. But we want to do some graphics

We will be placing objects into a three-dimensional space

e OUrX-, y-, andz-axes meet at therigin at location(0, 0, 0)

e theleft hand rule will help us find the positive directions of the axes

There are several interacting components that we need toraemed about in our image con-

struction:
} . objects: sphere, cone, etc.
places image in

(image>

CS 110 The Art & Science of Computer Graphics Spring 2010

As you might guess, the scene is our universe and it contdijests and light sources. Then a
camera takes a picture of the scene from a specific vantagé gl produces an image that we
can view on our screen.

Building a Our First Model

So far, we have been primarily using the bottom window in D«Suoe, since we just want to have
DrScheme compute some simple value and print it out.

As we develop complex models, however, we will want to coraliirese simple statements into a
program. We will develop our programs in the top window in DrScheme.

All of our programs start with the magic incantation:
(require (lib "Defs.ss" "Mead"))
Unless we specify otherwise, Mead always provides us:

e A scene where we place the objects we wish to model.

e A caner a that can take a picture of the scene, which sits at pos(ton 0, -500),
pointing at the origin.

e A bul b that illuminates the scene, which sits at positj@dh 300 - 300).

We need to put something in the scene. To do this we send it asage” (using the el |
command), saying that we want to add a cube:

; build a default cube (100x100x100, gray, centered at the origin)
(tell scene
(add cube)

)

This puts a cube in the scene. As we see indbrement, it is by default a gray color, sitting at
the origin, and with dimensions 100x100x100. Normallystisn't exactly what we want and we
would specify a different position, size, and color for oube.

The idea of a comment is very important — anything after a selomn on a line in a Scheme
program is ignored — it's just there for our benefit. Othemtliiae semicolon, the syntax is not
important for a comment, so we should make it human-readaidze, we use the comment to
remind ourselves that even though all we're saying is to addbe, that cube is 100x100x100,
centered at the origin, and is gray in color.

Use lots of comments in your models. It's helpful to you andnte. And it will get you better
grades on your assignments!

So now we have an object in the scene. We can now take a pidtitre o

3

CS 110 The Art & Science of Computer Graphics Spring 2010

(tell camera
(shoot)

)

When we click the “Run” button in DrScheme, it executes the maogwe’ve developed in the top
window. In this case, thecene is told to add a default cube and tbaner a is told to shoot to
create an image of the scene.

If all is well, we should see some messages, and then an infage gray cube should show up.
We have built a model!

See Example:
/ home/ j t eresco/ shared/ cs110/ exanpl es/ Fi r st Exanpl eCube

Colors and Transformations
Now that we have a simple model, we can experiment with waysake it a bit more interesting.

Instead of the default gray cube, we can construct it out efld'plaster-like” material:

(tell scene
(add cube redPl aster)

)

Mead knows about several colors, each of which has a “Plasterial with that color:

bl ack, dkGay, gray, |tGay, white, red,
green, blue, magenta, yellow, cyan

We can move our cube:

(tell scene
(add cube redPl aster (translate -100 0 0))

)

Finally, some evidence of a third dimension!

We can change the size of our cube by specifying a scalingrfateach dimension. Let's make a
thin, flat red object:

(tell scene
(add cube redPl aster (scale .2 1 .01))

)

CS 110 The Art & Science of Computer Graphics Spring 2010

We can also rorate our cube about any of the coorinate axes:

(tell scene
(add cube redPl aster (xRot -45))

)

See Example:
/[honme/jteresco/ shared/ cs110/ exanpl es/ Mor eCube

Other Primitive Objects

In addition to the cube we've already used as building blpthere are a number of primitive
objects we can add to our scenes, subject to the same typasisfdrmations we've seen.

e Spheres
By default, aspher e is 100x100x100 and centered at the origin.

e Cylinders
A cyl i nder is also, by default, 100x100x100 in size. It is aligned altray-axis and the
ends are capped.

e Cones
The defaulicone is also 100x100x100. It points upward along the y-axis arged.

See Example:
/ home/jteresco/ shared/ cs110/ exanpl es/ Col or edSpher es

See Example:
/ home/ j t eresco/ shar ed/ cs110/ exanpl es/ Mor eShapes

Multiple Transformations

So far, we've added objects of a particular material, buel@avy seen how to transform the object
in a single way.

If we want to add multiple transformations to the same obj@etgroup them into a single trans-
formation with aconpose:

(add cube redPl aster
(conpose
(scale 2 2 2)
(translate 10 10 10)
(yRot -45)

CS 110 The Art & Science of Computer Graphics Spring 2010

Order matters! Consider these:

See Example:
/ home/ j t eresco/ shar ed/ cs110/ exanpl es/ Rot at edCubes

We can also make some coordinate axes:

See Example:
/[home/jteresco/ shared/ cs110/ exanpl es/ Axes

Defining Objects and Groups

While we're looking at very simple models so far, you mightealdy be thinking that it's going
to be very tedious if we always have to create each of our thjeam the primitives, overriding
default attributes every time. What if we want several smialck spheres?

(obj ect snowranEye Sphere
(material blackPlaster)
(scale .1 .1 .1)

(tell scene
(add snownmanEye
(translate -25 0 0)

)

(tell scene
(add snownmanEye
(translate 25 0 0)

)

We can also define groups of objects that we can later mamgpasaa single object.

See Example:
/[hone/jteresco/ shared/ cs110/ exanpl es/ | ceCr eantCones

In this example, we see how to define a new object that we riace€r eanCone. It is not
defined as one of our primitive types, but a&aoup. And then we specify the components to
include in our group bydding objects just like we’'d add them to osicene.

Once we've created the group object, we can add it to the smeather groups just like we can
add instances of our primitive object types.

Notice here that in our ceCr eanCone we have specified that the cone is always made of

yel | owPl ast er (yum), but have not specified a material for our ice cream.s Tieans that

CS 110 The Art & Science of Computer Graphics Spring 2010

the ice cream will use the default grey material unless weigpene. We do just that when we
add thei ceCr eantCone to the scene. The ice cream, since we did not specify a mhitetize
group definition, takes on the material specified when adtfiagyroup to the scene. The cone, on
the other hand, was given a specific material in the groupitiefinand that one will take priority.

Another example, developed by the Spring '08 class:

See Example:
/ home/ j t eresco/ shar ed/ cs110/ exanpl es/ Snowiven

More Colors, Lights, and Cameras

As we prepare for the first Mead lab, it’s time to consider howniake more colors, lights, and to
change the properties of the camera. We’ll come back to edtiese in more detail soon, but this
will help you make more interesting (and maybe even morestéglmodels right away.

Defining Colors and Materials

To make new colors of our “plaster” material:

(define orange (1 0.54 0)) ; 100%red, 54% green, 0% bl ue
(obj ect orangePl aster Materi al

(type ’'plaster)

(col or orange)

)

As some of you may be aware (and those of you who aren’t, novay@l each color is defined by

a blend of red, blue, and green light - the three primary sobddight and those used in computer
displays to make all of the colors we enjoy. Again, we’ll sdgtamore about this later, but for now

you can construct colors by experimenting with combinatiohred, green, and blue intensities
(which, in our case, must be in the range 0-1) to create hew <ol

Note: the apostrophes in the Mead code above are importaotmally, scheme attempts to
interpret any list of items in parentheses as a function. Bué hthe list (1 0. 54 0) is not
something to be interpreted, it's just a list of numbers. thar term’ pl ast er, we need the
apostrophe to say that this is just a word, not a referencedefiaed object (likeor ange or
caner a).

Adding Lights
We can also add more lights to the scene.

The bulb that is provided automatically by Mead producedevight, has an intensity of 0.5 (0 is
no light, 1 is most intense light) and is locateq & 300 - 300).

(obj ect bl ueBul b Light

CS 110 The Art & Science of Computer Graphics Spring 2010

(col or bl ue)

(intensity .75)

(pos ' (100 300 -250))
)

(tell scene
(add bl ueBul b)

)

This will put a light source with .75 intensity at positior0{,300,-250). This bulb emits blue light.
We can shine this light onto a white cube and see the effect:

See Example:
/[home/jteresco/ shared/ cs110/ exanpl es/ Wi t eCubel nBl ueLi ght

Modifying the Camera and Image

Besides telling our default camera to shoot a picture, we ead & messages about where to locate
itself and where to look. And we can tell the image to use abifit background color.

(tell camera
(pos ' (0 500 -500)) ; nove the canera up and toward us

(coi (0 00)) ; look at the origin (the default behavi or)
)
(tell imge

(background white) ; if you hate cyan backgrounds
)

Additional Examples

For a little extra practice, and in honor of the upcoming Wir®lympics, we will develop in class
a model of a ski race gate.

A few notes about this example:

e We will use named constants (like ange above) to define meaningful numbers. The ad-
vantage here is that we can define things like the diameten@igtit of the posts, the distance
between them. We can then change these sizes by changintpemynstant definitions and
the changes will be applied throughout the model.

¢ We will use named components and groups as we did in previam@es.

See Example:
/ home/ j t eresco/ shared/ cs110/ exanpl es/ Ski RaceGat e

8

CS 110 The Art & Science of Computer Graphics Spring 2010

And another example for your reference: Tinker Toys!

See Example:
/ home/ j t eresco/ shared/ cs110/ exanpl es/ Ti nker Toys

